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Abstract 

This study used Monte Carlo simulations to evaluate the item parameter recovery from 

ACER ConQuest 3 software (Adams, Wu, & Wilson, 2012) for the dichotomous Rasch 

model. Our primary focus was the comparison of its estimation methods, joint maximum 

likelihood (JML), marginal maximum likelihood (MML) with a normal distribution 

assumption and MML with a discrete distributions assumption when the populations were in 

fact non-normal. The simulation data sets were generated with two test lengths (10 and 50 

items) and four alternative true population distributions for the abilities: normal, bimodal, 

uniform, and chi-square. As expected, results showed that MML-Normal was the best method 

when the assumption of ability distribution was matched, regardless the test length. However, 

the accuracy or MML-Normal decreased with the violation level of the assumption of normal 

distribution of the latent ability. The MML-Discrete estimation could overcome well the 

weakness of the MML-Normal when the normality of the ability distribution was violated. 

The estimates of the corresponding standard errors produced by ACER ConQuest 3 were also 

being examined and discussed. 
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Introduction 

This paper is concerned with comparing the outcomes of using joint maximum 

likelihood estimation (JML) and marginal maximum likelihood estimation (MML) as 

estimation methods for Rasch measurement models (Rasch, 1960/1980). In this particular 

paper we will be limiting ourselves to an examination of the properties of JML and MML 

for Rasch’s simple logistic model. Our particular interest is in comparing JML and MML 

when the assumptions required by MML are violated. 

We begin by introducing the simple logistic model. Suppose that a sample of N 

examinees indexed � = 1,… ,� responds to a set of K test items indexed � = 1,… , � ; and 

the items are scored dichotomously so that the response of student n to item i can be denoted 

	
� 	which takes the value ‘1’ for a correct response and ‘0’ for an incorrect response, then 

the model can be written as: 

��	
�; ��, �
� =
���������������

������������
,	 	 	 (1) 

where �
 is referred to as the case parameter, it is the location of case n on the latent 

continuum and ��	is referred to as the item parameter, it is the location of item i on the latent 

continuum. 

JML and MML are among the most popular estimation methods available for item 

response models. The JML method, as developed by Birnbaum (1968) and Wright and 

Pachapakesan (1969), and has been widely used (Hambleton & Swaminathan, 1985; Baker, 

1992). Under the JML method all item parameters and all person parameters are regarded as 

fixed unknowns to be estimated. Therefore, the parameters involved in the estimation 

procedure of this method are all of the case parameters, the �
	 for 	n = 1,… , N and all of 

the item parameters, the �� for i = 1,… , K . 
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JML requires maximisation of the likelihood: 

Λ�Θ, Δ; '� = ∏ ∏ ��	
�; ��, �
�)
�*�

+

*� ,  (2) 

with respect to Θ and ∆.  	Θ represents all the case parameters, ∆	all the item parameters and 

X the data. 

The MML method was developed by Bock and Lieberman (1970), and Bock and Aitken 

(1981). When using the MML method it is assumed that individual’s positions on the latent 

variable are sampled from distributions of possible values. In the simplest applications of 

MML the model then becomes: 

��	
�; ��|�
� =
���������������

������������
,    (3) 

where �
 ∼ /�0�, that is the case locations are distributed independently according to the 

probability density function g which has parameters 0. 

Rather than estimating the location of each case, the parameters 	0, of the distribution, g, 

from which the cases are sampled, are estimated. Under this method, item parameters are 

considered as “structural”, while ability parameters are “incidental”. As a result, in its 

estimation procedure, the MML includes the item parameters, the �� for i = 1,… , K and the 

population parameters 0 but not case parameters. 

MML involves the maximisation of the likelihood: 

Λ�α, Δ; '� = ∏ 23 ∏ ��	
�; ��, �
�4)
�*� �


5
�5 6+


*� ,   (4) 

with respect to 0 and ∆.  0 represents all the case distribution (or population) parameters, ∆ 

all the item parameters and X the data. 

Practically, JML is relatively easy to implement and has been applied in many widely 

used computer programs. These include CALFIT (Wright & Mead, 1975), BICAL (Wright, 

Mead, & Bell, 1979), CREDIT (Masters, Wright, & Ludlow, 1980), FACETS (Linacre, 
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1989), Quest (Adams & Khoo, 1993) and Winsteps (Linacre 2007) to name a few. These 

implementations of JML for Rasch Models have been accompanied by a wide array of 

simulation studies (Wright & Douglas, 1977a, 1977b; Wright, Mead, & Bell, 1979; Masters, 

1980) that have produced impressive results. 

From a theoretical perspective however JML has some shortcomings. Proofs of the 

asymptotic properties of maximum likelihood estimators (Cramèr, 1946; Wald, 1949) 

assume that the number of parameters to be estimated is fixed and finite and does not 

changes as more independent observations are made. For the Rasch Model, however, the 

number of parameters to be estimated increases as the length and/or sample size increases. 

Neyman and Scott (1948) showed that when the number of parameters increases with the 

observations it is possible for maximum likelihood estimates to lack the usual properties of 

consistency, efficiency and asymptotic normality. Andersen (1973) showed that JML 

estimates of the item parameters for Rasch models are not consistent if the number of items 

is fixed and the size N→∞. 

Examining the properties of JML in more detail Haberman (1977) showed that the JML 

estimates of the simple Rasch model are consistent when N→∞, K→∞ and log�/� → 0 , 

and asymptotically multivariate normal when N→∞, K→∞ and �log��=/� → 0. 

Haberman’s results were derived for the simple logistic model and we are not aware of 

extensions of the results to JML estimates of more general Rasch models. The key 

requirement in Haberman’s proof is that the probability of inestimable parameters approach 

zero. Inestimable case parameters result when a case obtains a perfect or zero score and 

inestimable item parameters occur when a response category is not used – for the 

dichotomous model this reduces to the same requirements as for case parameter estimates. 

Therefore, Haberman’s proof would suggest that the parameter estimates for more general 
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models would be consistent provided the probability of unused categories and perfect and 

zero case scores approaches zero. 

To deal with the bias in JML, Wright and Douglas (1978) proposed a correction of, (K-

1)/K, where K is the number of items. They argued that this correction removed most of the 

bias for K>20 and this finding was supported by Wright (1988). For tests of fewer than 10 to 

15 items, van den Wollenberg, Wierda, and Jansen (1998) suggest that this bias correction is 

inappropriate since the bias is dependent not only on the number of items, but also on the 

skewness of the item difficulty distribution. This correction has commonly been applied in 

JML software. 

A second potential shortcoming of JML is that in many of its potential applications the 

goal is to make inferences concerning populations. For example the interest might be in the 

variance of a latent variable in a specific population, or the correlation between two latent 

variables in a specific population. In such contexts, if JML is used for estimating the 

measurement model then a two-step analysis is required. First the case parameters are all 

estimated with JML and then the population parameters are estimated from individual case 

estimates. A number of researchers (Adams, 1989; Adams, Wilson, & Wu, 1997; Mislevy, 

1984) have illustrated that the use of case parameter estimates as though they were true 

values in a two-step analysis can lead to quite misleading outcomes. This problem is at its 

most serious when there are few items in a measurement. In general, as mentioned by 

Mislevy (1984) “The distribution of estimates of individual subjects’ parameters may then 

depart radically from the distribution of the parameters themselves, thereby invalidating any 

analyses that would treat the estimates as if they were the parameters they represent” (p. 

359). 
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The MML method overcomes these disadvantages of the JML method, but it does so at 

the expense of making an additional assumption concerning the distribution for the latent 

variable. Although the distribution can be of any type, with a limit on the number of 

parameters, normal densities are most frequently used (see Bock & Lieberman, 1970; Bock 

& Aitkin, 1981; Thissen, 1982; Mislevy, 1984; Adams & Wu, 2007). 

If MML is used, population parameters are estimated directly from the observed 

responses; that is without estimating a location parameter for each case. This avoids the 

problems associated with estimating population characteristics using fallible case parameter 

estimates in a two-step process. Secondly, if both the item response models and the assumed 

population distributions are correct the MML item parameter estimates are consistent for 

any fixed K (Bock & Aitkin, 1981; Harwell, Baker, & Zwarts, 1988). 

From a theoretical perspective it should be noted that in assuming a distribution for the 

latent variable, MML is not just an alternative method of estimation – it fits a different 

model. Following the convention of all relationships between fixed quantities functional and 

relationships between random quantities structural (Kendall & Stuart, 1979), de Leeuw & 

Verhelst (1986) have called the model a structural Rasch Models if it is assumes that the 

cases are some from some distribution and a functional Rasch model if no distributional 

assumptions are made. The structural model that is fitted whenever MML is applied is a 

model with more assumptions than the functional model assumed when estimating with 

JML. The advantage of this is that, should the distributional assumptions be correct then the 

MML item parameter estimates will be consistent and will have a smaller mean squared 

error than their JML counterparts. The disadvantage is that when the distributional 

assumptions are not correct the parameter estimates may not be consistent and may have 

less desirable characteristics than JML estimates. 
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Engelen (1987), using simulated data to compare joint, marginal, and conditional 

maximum likelihood methods, as well as Bayesian methods, minimum chi-square methods, 

and paired comparison estimation, confirmed that MML was the best procedure when its 

assumptions where met.  However, the application of the marginal estimation approach is 

often restricted to the assumption of a normal distribution for the population when this may 

not be a desirable assumption. Some empirical studies demonstrate that MML estimators 

loose accuracy and efficiency when the prior assumption of the latent distribution is 

violated. Specifically, factors showing effects on the accuracy and estimation error for 

parameter estimates could be the degree of skewness and kurtosis of the true underlying 

examinee parameter distribution, the match of the prior distribution to this underlying 

distribution, the variance of the prior distribution, sample size, test length and the number of 

parameters whose true values are extreme (Yen, 1987; Drasgow, 1989; Zwinderman & van 

den Wollenberg, 1990; Seong, 1990; Harwell & Janosky, 1991; Stone, 1992; Kirisci, Hsu, 

& Yu, 2001). 

While MML is a most commonly used with an assumption of normality for the latent 

variable, this need not be the case. For example, Adams and Wilson (1997) discuss the use 

of a discrete distribution where a fixed set of grid points is assumed and a weight is 

estimated at each grid point. 

This study is primarily concerned with the question of the accuracy in item parameter 

recovery by the MML method, when compared to that of the JML method when the 

distributional assumptions of MML are violated.  We also examine the accuracy of 

estimation of the population variance. We consider four distributions: normal, chi-square 

with five degrees of freedom, a bimodal mixture of two normal distributions and a uniform 

distribution. We use samples of size 2000, two test lengths (10 items and 50 items) and we 
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estimate the models using JML and MML with both a normal population assumption and 

with a discrete distribution assumption. 

Method 

Data generation  

This study is concerned with item parameter recovery for the dichotomous Rasch model. 

Our primary focus is on comparing JML and MML when the assumptions of MML are 

violated, that is the abilities are not sampled from the distribution that is assumed in the 

estimation. We therefore generate data that conforms to the dichotomous Rasch model using 

four alternative true population distributions for the abilities. We then use the ACER 

ConQuest 3 software (Adams et al., 2012) to recover Rasch model parameter estimates 

using JML and MML. For the MML estimation we consider two alternative distribution 

assumptions. First, we assume a normal population distribution, the variance of which is 

estimated, this will be referred to as MML-Normal. Second, we assume a discrete 

population distribution, under which a set of 15 nodes uniformly spaced between –6.0 and 

6.0 is assumed and densities at each node are estimated, this will be referred to as MML-

Discrete. 

For the simulation study a number of factors that can be varied need to be considered. 

The characteristics of the population distribution, the size of the ability sample, the 

characteristics of the item distribution and the length of the tests. For the sake of simplicity 

and to ensure focus on the shape of the population distribution, eight distinct combinations 

of the above listed factors were considered – four population distributions (to be described 

below), a single sample size of 2000 examinees, a single uniform U[–3,3] item distribution 

and two test lengths (10 and 50 items). The item difficulties of 10 and 50 items were 

randomly generated from a uniform distribution U[–3,3] and then transformed to ensure 
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constrained as a mean of zero. These values were fixed and considered as the generated 

values for all replications. For each of the eight combinations of factors 1000 replications 

was undertaken. 

The central variable in this investigation was the shape of the population distribution. 

The four distributions used in this study are shown in Figure 1: normal, bimodal, uniform 

and chi-square. For comparison purposes all four distributions had a mean of zero and 

standard deviation of one. The normal distribution was N(0,1). The uniform distribution was 

]3,3[ +−U . The bimodal distribution was a combination of two normal distributions with 

means of –0.8 and 0.8 respectively, and standard deviation of 6.0 , ( )6.0,8.0−N and

( )6.0,8.0+N . The chi-square distribution was a standardisation of a chi-square 

distribution with five degree of freedom. This distribution was positively skewed (skewness 

of 1.26), and the other three were symmetric (skewness of zero). 

More specifically, as can be seen from Figure, relative to the normal, the uniform 

distribution (Kurtosis= –1.20) has light tails, a flat centre, and heavy shoulders; the bimodal 

distribution (Kurtosis=3.79) has two peaks, light tails, a deep centre, and heavy shoulders; 

the chi-square distribution (Kurtosis=2.40) has a heavy right tail, a peaked centre, and light 

shoulders. 

Insert FIGURE 1 about here 

For each randomly drawn sample a set of simulated dichotomous data were generated 

using the fixed item difficulties. The data were generated using the ACER ConQuest 3 

generate command so that they conformed to Rasch’s simple logistic model. 
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Analysis 

Item calibrations based on MML-Normal, MML-Discrete and JML methods were also 

implemented by ACER ConQuest 3 using the following estimate command.  

“estimate! iterations=1000, converge=0.00001, fit=no, stderr=quick, method=gauss” 

In this estimate command, the convergence criterion was set as 0.00001, the maximum 

number of iterations was 1000, and MML with a normal distribution was used as it is the 

default method of estimation. The fit=no option was used so that estimation time was 

reduced. Further, as the model was identified by setting the mean of the latent distribution at 

zero the item parameter estimates are independent (Adams, 1989) so that the stderr=quick 

option was expected to provide appropriate estimates of the standard errors. 

For MML-Discrete the estimate command above with an option, distribution=discrete. 

“estimate! iterations=1000, converge=0.00001, fit=no, stderr=quick, distribution=discrete” 

In this estimation the default number of nodes (15) and the default node range (–6.0 to 

6.0) was used. However, in the cases of study here only some of these nodes would be 

expected to have a non-negligible density. It can be seen from Figure 1 that the uniform 

distribution is covered by only five of the nodes (–1.714 to 1.714). The chi-square 

distribution is covered by only nine of the nodes (–0.857 to 6.000). Among those, three 

nodes (4.286, 5.143, 6.000) would rarely be used with the chi-square distribution. Similarly, 

six nodes (–6.000, –5.143, –4.286, 4.286, 5.143, 6.000) would rarely be used with the 

normal or the bimodal distributions. The normal distribution is likely to use the most 

number of nodes while the uniform distribution would use the least number of nodes in the 

estimation procedure. 
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The estimate command above with an option, method=jml, was used for item 

calibrations based on JML method: 

“estimate! iterations=1000, converge=0.00001, fit=no, stderr=quick, method=jml” 

In the ACER ConQuest 3 implementation of JML, the correction factor (K-1)/K is 

applied. The nature and number of estimated parameters differs amongst MML-Normal, 

MML-Discrete and JML. While for each method either 10 or 50 item parameters are 

estimated, the situation is quite different for the case or population parameters. For MML-

Normal there is one estimated distribution (or person) parameter, the variance. For MML-

Discrete, there are 15 estimated distribution (or person) parameters, the densities at each of 

the 15 nodes points. For JML, there are 1999 estimated person parameters, the location of 

each case on the latent dimension, but with a degree of freedom lost due to the identification 

constraint. 

Since our primary focus is on the effect of violating the population distribution 

assumption on item parameter estimation and because it is only item parameters that are 

common to both estimation methods, we focus primarily on the parameter recovery for the 

item parameters. We also consider estimation of the population variance. 

The accuracy of parameter recovery is shown by computing bias and root mean square 

error (RMSE) statistics for each of the estimated parameters. Bias for an item difficulty 

parameter or the variance parameter was computed as the mean difference, across the 

replications, between the estimated values and the true values. 

i

k

k

iiBias δδδ −







= ∑

=

1000/ˆ)(
1000

1

,   (5) 
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where 
iδ denoted the generating difficulty value of item i, and k

iδ̂  denoted its estimate in the 

k-th replication. An analogous approach was used for the variance parameter for MML-

discrete. 

RMSE was the square root of the average squared difference between the true and 

estimated values: 

1000/)ˆ()(
1000

1

2∑
=

−=
k

i

k

iiRMSE δδδ

.

  (6) 

Additionally, together with assessing the accuracy of parameter recovery of item 

difficulty parameter estimates obtained by the three estimation methods, the corresponding 

standard error (SE) of these estimates was also evaluated by the ratios of average error 

variance over sampling variance. 
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SERatio

δδ   ,  (7) 

where 
iδ denotes the average of k

iδ̂  estimates of difficulty value of item i, and k

iSE  denotes 

the standard error of the estimate in the k-th replication. If the standard error estimate, SE 

(produced by ACER ConQuest 3), was accurate, the ratio of the average error variance 

estimate over the sampling variance (equation 6) would approach unity. Otherwise, if the 

ratio was larger than unity, the standard error was overestimated. On the other hand, if the 

ratio was smaller than unity, the standard error was underestimated. 
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Results 

Bias of item difficulty estimate 

Table 1 gives the mean and standard deviation of the absolute value of item difficulty 

bias (across the items in each of the two tests) from the MML-Normal, MML-Discrete and 

JML estimators over the 1000 replications, for each of the four ability distributions. 

Additionally, Figure 2 shows the magnitude of the bias for individual items by each 

estimation method plotted against the generating item difficulty. 

Insert TABLE 1 about here 

Table 1 shows that, with the 10-item test, the bias was negligible for MML-Normal. In 

this case, the mean of the absolute bias value was only 0.003. The value increased to 0.006, 

which was still small when the distribution was bimodal and to 0.010 and 0.034 when the 

distribution was uniform and chi-square respectively. The bias in the MML-Normal 

estimators for the 50-item test is less than that for the 10-item test for all three non-normal 

distributions. However, the bias was negligible for three of the ability distributions: normal, 

bimodal and uniform, where the mean of the absolute bias value was only 0.002—0.003. 

The value was 0.009 when the ability distribution was chi-square. 

Part (a) of Figure 2 demonstrates that when the abilities are normally distributed, MML-

Normal has an almost zero bias for all generating values. For the bimodal and uniform 

distributions there was evidence of a linear bias resulting in underestimation of the difficult 

of easy items and over estimation in the difficulty of harder items, while for the chi-square 

the shape of the bias as a function of item difficulty is arc downwards. In the chi-square case 

there was underestimation of the difficult of both very easy and very hard items and there 

was over estimation in the difficulty of middle difficult items. These bias patterns are more 
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evident for the longer test, part (b) of Figure 2, although the actual magnitude of the bias is 

less for the longer test than it was for the shorter test. 

For JML the bias was larger than that for MML-Normal when the ability distributions 

was normal, smaller when the distribution was chi-square and similar for the bimodal and 

uniform distributions. 

While the bias for the JML estimation for the long test was negligible for all 

distributions (the mean of the absolute bias value was only 0.003—0.005) Part (d) of Figure 

2 demonstrates that there was general trend of underestimation of the difficult of easy items 

and over estimation in the difficulty items. 

The MML-Discrete method produced estimates superior to MML-Normal for the three 

non-normal ability distributions and superior to JML for all ability distributions. In the 10-

item test, the bias in the item difficulty parameter estimates from this method was very 

consistently small. The mean of the absolute bias was only 0.002 to 0.004. The mean of the 

absolute bias was 0.003 to 0.008 in the 50-item test. Part (e) and part (f) of Figure 2 indicate 

that the accuracy of MML-Discrete estimator was superior to the MML-Normal estimator 

when the ability distribution was chi-square. The MML-Discrete estimator did however 

have larger bias for uniform distributions than for the other three distributions. In that case, 

the difficult of easy items tended to be under-estimated while the difficult of harder items 

tended to be over-estimated. This probably happened due to the fact that in the computation 

procedure, only the middle five of the 15 quadrature nodes were utilised for the uniform 

distribution while more of the quadrature nodes were utilised for the other three 

distributions. 

Insert FIGURE 2 about here 
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An explanation for the shape of the bias function for MML-Normal can be found by 

reviewing the cumulative density functions (CDF) for each of the distributions The CDFs, 

which are plotted in Figure 3 show that when using a normal distribution to approximate the 

chi-square distribution, there would be a substantially greater proportion of examinees 

answering the items correctly than expected for easy items (<–1.1 logits, for example) or 

hard items (>1.5 logits, for example). Therefore, the difficulty of these items would be 

underestimated. 

Furthermore, there would be a substantially lower proportion of examinee correctly 

answering the items in middle range of difficulty (–0.8 to 0.8 logits) than expected.  As a 

consequence, there was an over-estimation of the difficulty for these items. Similarly, 

Figure 3 suggests that using a normal distribution to approximate the uniform distribution, 

would result in underestimation for very easy items and over estimation for very hard items 

Finally, the CDF shape of the bimodal is closer to the CDF shape of the normal distribution. 

This could explain why the bias from the MML-Normal estimation in this distribution was 

smaller than that in the chi-square and the uniform distributions. 

Insert FIGURE 3 about here 

RMSE of item difficulty estimate 

Table 2 gives the mean and standard deviation of the root mean square error, RMSE, of 

item difficulty estimates from the three estimation methods, for each of the two test lengths 

and for each of the four ability distributions. Additionally, the magnitude of the RMSE for 

individual items by each estimation methods is plotted against the generating item difficulty 

in Figure 4. 
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Firstly, according to Table 2, the mean value of RMSE from the MML-Normal 

estimator was the largest in the short test when the ability distribution was chi-square 

(0.071), and it was consistently smaller in other symmetric distributions (0.061—0.062).  

The mean value of RMSE from the MML-Normal estimator with the chi-square distribution 

was reduced to 0.065 in the long test, but it was not with other three symmetric distributions 

(0.061, 0.061 and 0.062 compared to 0.063, 0.063 and 0.062, respectively). 

Secondly, the mean value of RMSE from the JML estimator in the short test was largest 

when the ability distribution was normal (0.074) and second largest when the ability 

distribution was chi-square (0.064). The RMSE mean value decreased in the long test to 

0.063 and 0.063 respectively. The mean RMSE in bimodal and uniform distributions 

increased very slightly from the short test (0.061 and 0.061) to the long test (0.063 and 

0.062, respectively). 

Insert TABLE 2 about here 

Furthermore, the mean value of the RMSE from the MML-Discrete method in the short 

test was consistently small and similar for all four ability distributions (0.060—0.061). The 

value increased slightly in the long test to 0.062—0.063. The small increase of the RMSE 

mean (from the short test to the long test here (and in some cases above in MML-Normal 

and JML) could be due to the fact that the actual standard deviation of generated item 

difficulty in the short test (SD=1.786) was smaller than that in the long test (SD=1.803). 

Additionally, regarding the RMSE for individual items, Figure 4 shows that in general, 

the more the generating item difficulty differed from zero (middle difficulty) the larger the 

RMSE was, regardless of the estimation methods. However, in the case of the MML-
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Normal and with the chi-square distribution, the shape of the RMSE pattern tended to be 

slight arc downwards at a middle interval of the ability distribution. 

Insert FIGURE 4 about here 

Standard error estimates 

Table 3 provides a comparison of the between replication variation in the parameter 

estimates and the estimates of the standard errors. The ratios are plotted against the item 

parameters in Figure 5. The outcomes from MML-Discrete are not provided because the 

ACER ConQuest 3 implementation of MML-Discrete estimation provided clearly 

inappropriate estimates of the standard errors. 

Insert TABLE 3 about here 

The table shows that this ratio was closer to one for the MML-Normal than for the JML 

estimators, in every case.  This suggests that the standard error estimates from MML-

Normal, as produced by ACER ConQuest 3, were more appropriate than those estimated for 

JML. For both estimation methods, the standard errors estimated for the long test were more 

accurate than those estimated for the short test. There was no clear difference in the ratio 

value for the different ability distributions. The standard errors from JML were slightly 

overestimated in the short test with the three non-normal distributions. However, this did not 

happen with the JML for the long test. 

Additionally, no clear systematic patterns were found in the plots of Figure 5, meaning 

that the ratios were independent of the item parameters. The standard errors from none of 

the combinations showed substantial under- or over-estimation. 

Insert FIGURE 5 about here 
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Bias of ability variance estimate 

As discussed above, in addition to item parameter estimates, the MML-Normal 

estimation yields estimates of the population variance while JML provides individual 

location estimates for every student. Under JML, estimates of population characteristics, 

such as the variance, can only be obtained via two-step procedures. The first step is the 

estimation of the person parameters and a second step is an estimation of the variance from 

those estimated person parameters. 

In this section we compare the MML-Normal estimates of the variance with their 

generating values and similarly we compare the two-step estimates of the variance from 

JML and MML-Discrete with the generating values. Note that for the person parameter 

estimates under JML and MML-Discrete we used weighted likelihood estimates (WLE; 

Warm, 1982), since they are well known to be less biased than their unweighted 

counterparts (Roberts & Adams, 1997). The two-step estimates from MML-Normal were 

also compared to the generating values. 

Insert TABLE 4 about here 

Table 4 provides a comparison of the variance estimates obtained from each of the 

estimation methods with the generating values. The table also includes the RMSE values. 

The bias values from each case are plotted in Figure 6 and the RMSE is plotted in Figure 7. 

Insert FIGURE 6 about here 

Insert FIGURE 7 about here 

It can be seen from Table 4 and Figures 6-7 that when the ability distribution was 

normal (a match with the assumption of the model estimation), the bias in the variance 
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estimates for MML-Normal was very small (≤0.003) regardless of test length. The bias 

increased, however, when there was a violation in the normality assumption. When the 

ability distribution was bimodal or uniform, the estimate of the sample variance was 

overestimated. When the ability distribution was chi-square, the MML-Normal estimate of 

the sample variance was underestimated. 

For all eight combinations in the study, the bias of the sample variance estimate obtained 

through individual person parameter WLE (two-step estimate) in JML, MML-Discrete and 

MML-Normal was similar. In each case the estimate of the sample variance was clearly an 

overestimate and the estimation bias reduced with increased test length. Moreover, the bias 

magnitudes for those methods were larger than the corresponding bias magnitudes from the 

MML-Normal direct estimation. 

Conclusion and discussion 

Several conclusions can be drawn from the simulations in this study. First, with a 50-

item test, the three methods tended to produce similar results with small or negligible bias in 

item parameter estimates, although MML-Normal provided more accurate estimates than 

JML and MML-Discrete when the assumption of ability distribution was matched. 

Second, while the accuracy of JML was dependent on test length this was not the case 

for MML-Normal. MML-Normal provided very reliable estimates in a 10-item test when 

the assumption of ability distribution was matched. However, the accuracy or MML-Normal 

was decreased when there was a violation of the assumption of a normal distribution of the 

latent ability. This method appeared to produce the largest bias when the ability distribution 

was skewed. 

Third, MML-Discrete overcame the weaknesses of the MML-Normal when the 

normality of the ability distribution was violated. This method provided less bias than both 
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MML-Normal and JML, especially in a short test and when normality of the ability 

distribution was violated.  The bias of item difficulty estimates from this method was 

consistently small. However, the accuracy of MML-Discrete estimator is probably 

dependent on the choice of nodes. In the case of this study, the MML-Discrete estimator had 

larger bias for uniform distributions than for the other three distributions and this 

corresponds to the case where there is the largest number of redundant nodes. 

Regarding RMSE, when the sample size was large, increasing test length did not always 

help to reduce the mean value of RMSE in item difficulty recovery. Moreover, as expected, 

the more the generating item difficulty differed from zero (middle difficulty) the larger the 

RMSE was, regardless of the estimation methods. 

Additionally, the MML-Normal and JML estimators from ACER ConQuest 3 provided 

good estimates for the standard errors of item difficulties under the Rasch model. The 

accuracy of the standard errors in both methods was substantially increased by the test 

length. Moreover, in all combinations examined in this study, the standard error produced 

by the MML-Normal tended to be more accurate than the standard error produced by the 

JML. 

Finally, as a consequence of the fact that the population variance is directly estimated in 

the MML-Normal estimation model but not in the JML or the MML-Discrete, the estimation 

of the variance parameter was far more accurate in MML-Normal than in other two methods 

even when normality of the ability distribution was violated. When the assumption was 

matched the bias of MML-Normal estimate of the variance parameter was negligible. The 

two-step (indirect) estimates of the ability variance from the three methods were similar to 

each other and well and truly over-estimated. 
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Findings from this study suggest that to calibrate a short test, the MML-Normal should 

be in used if the ability distribution is approximately normal. Otherwise, the MML-Discrete 

should be considered, particularly when the normality assumption of ability distribution is 

likely to be markedly violated. MML-Discrete works well regardless of the shape of the 

ability distribution provided the nodes are well chosen to cover the range of the underlying 

ability distribution. 

With a longer test, the three methods tend to produce similar results, although the MML-

Normal provides more accurate estimates than the JML and the MML-Discrete when the 

assumed ability distribution is matched. However, the JML or the MML-Discrete should be 

recommended ahead of the MML-Normal when the assumption of ability distribution is 

severely violated (for example, chi-square distributions against normal distributions). 

In brief, this study focussed on comparing the accuracy of item parameter recovery for 

MML and JML estimation methods with different ability distributions. Specifically, the 

study focussed on the effects of test length and the violation of the normality assumption of 

the ability distribution on the MML-Normal estimation and compared it to JML and MML-

Discrete estimation. Consistent with the findings from a number of previous studies (e.g., 

Yen, 1987; Drasgow, 1989; Harwell & Janosky, 1991; Stone, 1992; Kirisci, Hsu, & Yu, 

2001), it was found that the accuracy of MML-Normal estimators decreased when ability 

distribution was very skewed. Furthermore, the bias was differentially affected by not only 

the direction of skewness but also the kurtosis of the distribution. With the chi-square 

distribution, for example, the bias shape of the MML-Normal estimators tended to arc 

downwards. There was underestimation of the difficult of both very easy and very hard 

items, where there was over estimation in the difficulty of some middle difficult items. 
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Moreover, in this study, for easier comparison purposes, all generated ability samples 

had the same mean and variance.  The study, therefore, did not include the effect of the 

variance of ability distribution on item parameter recovery of MML and JML. This remains 

a topic for future research. 

Finally, findings from this study also suggest value in a more careful examination of 

MML-Discrete. The lower bias of MML-Discrete in the case of short test when the 

normality assumption is violated is quite a promising finding and should motivate further 

application of this method. One immediate area of valuable further investigation would be 

the impact of the number of nodes and the node range on the efficacy of the parameter 

estimation. 
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Table 1 

Statistical summary of absolute bias in item estimates 

Ability distribution Minimum Maximum Mean SD 

MML-Normal and the short test 

Normal 0.000 0.006 0.003 0.002 

Bimodal 0.002 0.020 0.007 0.006 

Uniform  0.001 0.029 0.010 0.010 

Chi-square 0.004 0.069 0.034 0.020 

MML-Normal and the long test 

Normal 
0.000 0.010 0.002 0.002 

Bimodal 
0.000 0.013 0.004 0.003 

Uniform  
0.000 0.015 0.005 0.003 

Chi-square 
0.001 0.035 0.015 0.009 

JML and the short test 

Normal 0.005 0.058 0.028 0.017 

Bimodal 0.000 0.019 0.005 0.005 

Uniform  0.000 0.010 0.005 0.004 

Chi-square 0.004 0.056 0.015 0.015 

JML and the long test 

Normal 0.001 0.018 0.009 0.005 

Bimodal 0.000 0.014 0.006 0.004 

Uniform  0.000 0.013 0.006 0.004 

Chi-square 0.000 0.014 0.006 0.003 

MML-Discrete and the short test 
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Normal 0.000 0.009 0.004 0.003 

Bimodal 0.000 0.010 0.003 0.003 

Uniform  0.000 0.013 0.004 0.005 

Chi-square 0.000 0.008 0.002 0.003 

MML-Discrete and the long test 

Normal 0.000 0.013 0.003 0.003 

Bimodal 0.000 0.013 0.003 0.003 

Uniform  0.001 0.022 0.008 0.006 

Chi-square 0.000 0.017 0.003 0.003 

 

  



Accuracy of Rasch model item parameter estimation 31 

 

 

Table 2 

Statistical summary of RMSE in item estimates  

Ability distribution Minimum Maximum Mean SD 

MML-Normal and the short test 

Normal 0.049 0.085 0.061 0.014 

Bimodal 0.049 0.087 0.061 0.015 

Uniform  0.048 0.090 0.062 0.016 

Chi-square 0.056 0.110 0.071 0.019 

MML-Normal and the long test 

Normal 0.048 0.099 0.063 0.013 

Bimodal 0.048 0.101 0.063 0.013 

Uniform  0.048 0.100 0.062 0.013 

Chi-square 0.051 0.109 0.065 0.015 

JML and the short test 

Normal 0.051 0.117 0.074 0.025 

Bimodal 0.049 0.086 0.061 0.015 

Uniform  0.049 0.088 0.061 0.014 

Chi-square 0.052 0.101 0.064 0.017 

JML and the long test 

Normal 0.049 0.101 0.063 0.013 

Bimodal 0.048 0.100 0.063 0.013 

Uniform  0.049 0.098 0.062 0.013 

Chi-square 0.048 0.098 0.063 0.013 

MML-Discrete and the short test 
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Normal 0.049 0.086 0.061 0.014 

Bimodal 0.049 0.085 0.060 0.014 

Uniform  0.048 0.086 0.060 0.014 

Chi-square 0.047 0.085 0.060 0.014 

MML-Discrete and the long test 

Normal 0.048 0.100 0.063 0.013 

Bimodal 0.048 0.098 0.062 0.013 

Uniform  0.049 0.101 0.063 0.014 

Chi-square 0.048 0.102 0.063 0.014 
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Table 3 

Statistical summary of ratios of average error variance over sampling variance 

Ability distribution Minimum Maximum Mean SD 

MML-Normal and the short test 

Normal 0.944 1.119 1.040 0.054 

Bimodal 0.970 1.152 1.058 0.056 

Uniform  0.970 1.115 1.054 0.051 

Chi-square 0.944 1.218 1.043 0.090 

MML-Normal and the long test 

Normal 0.917 1.107 1.010 0.045 

Bimodal 0.891 1.121 1.008 0.046 

Uniform  0.961 1.123 1.018 0.037 

Chi-square 0.903 1.118 1.014 0.051 

JML and the short test 

Normal 0.793 1.109 0.963 0.112 

Bimodal 1.022 1.234 1.134 0.063 

Uniform  1.047 1.209 1.129 0.056 

Chi-square 1.044 1.218 1.147 0.054 

JML and the long test 

Normal 0.926 1.119 1.024 0.046 

Bimodal 0.903 1.144 1.027 0.048 

Uniform  0.970 1.152 1.039 0.039 

Chi-square 0.932 1.114 1.032 0.048 
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Table 4 

Statistical summary of bias and RMSE of sample variance estimates  

  Bias    

Ability distribution Minimum  Maximum Mean SD RMSE 

MML-Normal and the short test  

Normal -0.160 0.186 0.002 0.060 0.060 

Bimodal -0.134 0.226 0.039 0.059 0.071 

Uniform  -0.112 0.267 0.059 0.058 0.083 

Chi-square -0.241 0.133 -0.056 0.064 0.085 

MML-Normal and the long test  

Normal -0.105 0.123 0.003 0.037 0.037 

Bimodal -0.074 0.119 0.012 0.032 0.034 

Uniform  -0.064 0.116 0.019 0.028 0.034 

Chi-square -0.186 0.075 -0.040 0.044 0.060 

JML and the short test  

Normal 0.488 1.668 0.671 0.092 0.677 

Bimodal 0.472 0.875 0.676 0.062 0.679 

Uniform  0.511 0.887 0.682 0.060 0.685 

Chi-square 0.404 0.818 0.613 0.065 0.617 

JML and the long test  

Normal 0.036 0.274 0.148 0.038 0.153 

Bimodal 0.064 0.255 0.147 0.031 0.150 

Uniform  0.068 0.243 0.148 0.028 0.151 

Chi-square -0.052 0.274 0.134 0.053 0.144 
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MML-Discrete and the short test  

Normal 0.490 0.881 0.674 0.065 0.678 

Bimodal 0.477 0.882 0.683 0.063 0.686 

Uniform  0.513 0.907 0.689 0.061 0.691 

Chi-square 0.416 0.807 0.631 0.067 0.635 

MML-Discrete and the long test  

Normal 0.034 0.269 0.145 0.038 0.149 

Bimodal 0.059 0.250 0.142 0.032 0.146 

Uniform  0.069 0.244 0.150 0.028 0.153 

Chi-square -0.026 0.313 0.138 0.051 0.147 
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Figure Captions 

Figure 1. Ability distributions used to generate simulated data 

Figure 2. Bias of item difficulty estimates. (a) MML-Normal and the short test; (b) MML-

Normal and the long test; (c) JML and the short test; (d) JML and the long test; (e) 

MML-Discrete and the short test; (f) MML-Discrete and the long test. 

Figure 3. CDF graphs for four distributions 

Figure 4. RMSE of item difficulty estimates. (a) MML-Normal and the short test; (b) 

MML-Normal and the long test; (c) JML and the short test; (d) JML and the long test; 

(e) MML-Discrete and the short test; (f) MML-Discrete and the long test. 

Figure 5. Ratio of SE square over sampling variance of item difficulty estimates. (a) MML-

Normal and the short test; (b) MML-Normal and the long test; (c) JML and the short 

test; (d) JML and the long test. 

Figure 6. Bias of ability variance estimate 

Figure 7. RMSE of ability variance estimate  
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Figure 1. Ability distributions used to generate simulated data  
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Figure 2. Bias of item difficulty estimates. (a) MML-Normal and the short test; (b) MML-

Normal and the long test; (c) JML and the short test; (d) JML and the long test; (e) 

MML-Discrete and the short test; (f) MML-Discrete and the long test.  
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Figure 3. CDF graphs for four distributions  
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Figure 4. RMSE of item difficulty estimates. (a) MML-Normal and the short test; (b) 

MML-Normal and the long test; (c) JML and the short test; (d) JML and the long test; 

(e) MML-Discrete and the short test; (f) MML-Discrete and the long test. 
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Figure 5. Ratio of SE square over sampling variance of item difficulty estimates. (a) MML-

Normal and the short test; (b) MML-Normal and the long test; (c) JML and the short 

test; (d) JML and the long test. 
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Figure 6. Bias of ability variance estimate  
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Figure 7. RMSE of ability variance estimate 


