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THE ESTIMATION OF POLYTOMOUS ITEM RESPONSE MODELS WITH 

MANY DIMENSIONS 

 



 

ABSTRACT 

Identification conditions and an improved estimation method for a D-d imensional 

mixed coefficients multinomial logit model are d iscussed .  This model is a 

generalisation of the Adams and Wilson (1997) random coefficients multinomial 

logit and  it can be used  to fit multd imensional forms of a wide range of Rasch 

measurement models.  The computational demands of the numerical integration 

required  in fitting such models have limited  previous implementations to three and 

perhaps four-d imensional problems (Glas, 1992; Adams, Wilson and Wang, 1997).  

This paper illustrates a Monte Carlo integration method that permits the estimation 

of models with much higher d imensionality.  The example in this paper fits models 

of six d imensions. 
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1.  INTRODUCTION. 

 

The development of multid imensional item response models that can be practically 

employed in applied  contexts is becoming an increasingly important psychometric 

problem.  The increased  popularity of performances assessment and the demands of 

a wide coverage of testing material within large scale testing programs are just two 

circumstances that are motivating the use and further development of item response 

models. 

In the case of performance assessments; much of their motivation lies with the desire 

to obtain a richer array of information about student performances than can be 

typically obtained  from multiple choice tests.  Analysing such data with models that 

hypothesise one underlying latent ability is likely to be unsatisfactory both from 

substantive and statistical perspectives.  Multid imensional item response models 

that can be routinely applied  to complex performance data are clearly an important 

psychometric requirement.  In the case of large scale testing programs, even the 

multiple choice components of such programs, there is a growing demand for  

student performances to be reported  on many sub-scales.  The National Assessment 

of Educational Progress (NAEP; Beaton, 1987; Zwick, 1992), the Third  International 

Mathematics and Science Study (TIMSS) (Martin and Kelly, 1996) and the OECD 

Programme for International Student Assessment (PISA) (Adams and Wu, 2002) are 

good examples of this.  In TIMSS, single test booklets of 70 minutes duration are 

used  to provide information on as many as 12 latent ability d imensions.  A set of 12 

unid imensional analyses of these data will not provide reliable student ability 

estimates for subsequent use in analysis or reporting.  In PISA test booklets of 120 

minutes were used  to provide information on five d imensions. 

Multid imensional item response models have been presented  and investigated  by 

many authors (for example; Ackerman, 1992; Andersen, 1985; Batley and Boss, 1993; 

Camilli, 1992; Embretson, 1991; Glas, 1992; Kelderman  and  Rijkes, 1994; Luecht and  

Miller, 1992; Reckase, 1985; Reckase & McKinley, 1991), there application has, 

however, been limited  to a few isolated  examples.  Even in NAEP a two step 

estimation procedure is used  to avoid  the use of a fully multid imensional item 

response model (see Beaton, 1987). 

In this paper we address two concerns with regard  the application of one 

multid imensional model that has been proposed —the multid imensional random 

coefficients multinomial logit that was introduced and d iscussed  by Adams, Wilson 
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and Wang (1997), and  Wang (1994).  The conditions under which the model is 

identified  and the application of the model in high d imensions is considered .  

In the next section of the paper the model is described . In section three identification 

restrictions are considered , in section four a Monte Carlo EM method is described  for 

fitting the model in high d imensions, in section five some simulations that explore 

the properties of the estimation method are reported  and in section six the 

application of the model to some real data is shown. 

 

2.  FORMAL DEFINITION OF THE MODEL. 

Suppose there is a set of items, I, indexed i I1, ,  and  each item i has Ki 1 

response categories with index j Ki0, , . Further, there are also N  ind ividuals, 

indexed n N1, ,  and  each individual responds to some subset In  of items from I. 

The vector valued  random variable X i  is applied  to indicate the Ki 1 responses to 

item  i .  That is Xni ni ni niK

T

X X X
i1 2, , ,d i , where 

 X
n j i

nij

RST
1

0

if person  scores in category  on item 

otherwise
 

for j Ki1, ,  . Note that it follows that if the individual responds in the category 

j 0 , or if item  i was  not in the set  In  then  X 0ni  . 

The esponse pattern is the vector valued  random variable X X X Xn n

T

n

T

nI

T T( , , , )1 2   

which was created  by collecting the Xni  together into a single vector. Particular 

instances of each of the random variables are indicated  by using their lo wer case 

equivalents. That is x xn ni,  and  xnik . 

Individuals are modelled  through a D-d imensional latent attribute parameter 

1 2, , , D

Tb g , which is seen as random with a population d istribution given by 

the multivariate normal probability density function (pdf): 

 g
D

T
( ; , )

( )
exp
RST

UVW
1

2

1

22 1 2

1a f a f , (1) 

where  is the vector  of means and  is the matrix of covariance of the random 

vector . 

An additional feature of the model is the introduction of a scoring fun ction that 

allows the description of the score or performance level that is assigned to each 
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response category on each of the D-d imensions. Using this approach it is possible to 

do if to introduce the notion of a response score, which gives the score level  for 

d imension d  of the observed response in category k  of item i . If a response 

category for a particular item does not relate to a particular latent d imension then the 

score on that latent d imension is set to zero.  The bikd  can be collected  in a vector as 

bik ik ik ikD

Tb b b( , , , )1 2  , and  the vectors can be collected  into the matrix 

1 211 12 1 21 2, , , , , , , ,
I

T T T T T T T

K K IKB (b b b b b b ) . 

The item parameters are given by the vector 
1 2, , , P

Tb g . Linear combinations 

of these P  parameters are used  in the response probability model to describe the 

behaviour of the response categories to each item.  These linear combinations are 

defined  by design vectors  for 1, , ; and 1, ,T

ik ii I k K a , so that if to define 

K Ki
i

I

1

, they can be denoted  collectively by the K P  design matrix 

 
1 211 12 1 21 2, , , , , , , ,

I

T
T T T T T T

K K IKA a a a a a a . 

Through the introduction of the scoring matrix B and  the design matrix A  it is 

possible to write a general mixed multinomial logit regression model that includes as 

special cases a wide class of existing Rasch models and perhaps more importantly 

provides a general context in which to develop and test Rasch measurement models  

(references) 

The item response probability model is: 

 f nik

nik ik

T

ik

T

niu iu

T

iu

T

u

Ki
( ; , | )

exp

exp

x A,B
x b a

x b a

c h
c h

1

. (2) 

The assumption of conditional independence allows us to write the probability of a 

vector of responses conditioned on the random quantities for n - th person as 

 ( ; , | )
exp

,
x A,B

x B A
n

n

T

n

b g
b g , (3) 

where 

 n ij

T

ij

T

j

K

i

i

n

, expb g b a
I 1

, (4) 

or equivalently 
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n

T

n

( , ) exp z B A
z

b g , (5) 

and  n  is the set of all possible response vectors for the items in I with zeros for all 

categories for all items that were n ot in In , the sub-set of items responded to by 

person n . 

Under the marginal formulation the probability of a response vector xn  is: 

 f g dn n

RD

x A B x A B; , , , , ; , , | ; ,b g b g a fz  (6) 

or equivalently 

f g dn

n

T

nRD

x A B
x B B A

; , , , ,
exp

,
; ,b g b g

b g a fz 0  

 z exp

,
; ,

x B B An

T T T T

nR

g d
D

e j
b g a f0 .  (7) 

Through appropriate choices of A  and  B, (7) can be shown to encompass models 

such as Rasch’s (1960) simple logistic model, Fischer’s (1973) linear logistic latent 

trait model, Andrich’s (1978) rating scale model, Masters’ (1982) partial credit model, 

Linacre’s many-faceted  model (1989), Wilson’s (1992) ordered  partition model and  a 

range of multid imensional models such as Whitely’s (1980) multicomponent latent 

trait model, Andersen’s (1985) Rasch model for repeated  testing and Embretson’s 

(1991) multid imensional Rasch model for learning and change.  The reader is 

referred  to Adams and Wilson (1997) and Adams, Wilson and Wang (1997) for 

examples of how this is accomplished . 

As an illustration  the form of the A and  B matrices necessary to give a 

unid imensional version of the simple logistic model, the partial credit model and  the 

rating scale model are provided. 

For the simple logistic model as applied  to d ichotomies, A is simply a d iagonal 

matrix with ones on the d iagonal and  B is a vector of ones.  So that if a test has four 

items the matrices A and  B have the following form  
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 A BSLM SLM

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

1

1

1

and . (8) 

For the partial credit model and  using the Masters’ parameterisation the A matrix is 

made up of a sequence of blocks, one for each item.  The size of each block is equal to 

K i  and  the elements of the matrix are zeros if they are over the main d iagonal and  

one if they are on or below this d iagonal. B is a vector made up of sequences of 

successive integers, one sequence for each item.  For example, if there are three items 

with 3, 4 and 5 categories respectively then the form of complete matrices A and  B 

are: 

 A BPCM PCM

L

N

MMMMMMMMMMMM

O

Q

PPPPPPPPPPPP

L

N

MMMMMMMMMMMM

O

Q

PPPPPPPPPPPP

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 1

1

2

1

2

3

1

2

3

4

and  (9) 

For Andrich’s (1978) rating scale model, again using the Wright & Masters (1982) 

parameterisation a test of I items each with K 1 categories would  be modelled  with 

the following A and  B. 
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ARSM

I K

K

K

K

K

K

K

L

N

MMMMMMMMMMMMMMMMMMMMMM

1 0 0

2 0 0

0 0

1 0 0

0 0

0 1 0

0 2 0

0

0 1 0

0 0

0 0 1

0 0 2

0 0

0 0 1

0 0

1 0 0

1 1 0

1 1 1

0 0 0

1 0 0

1 1 0

1 1 1

0 0 0

1 0 0

1 1 0

1 1 1

0 0 0





 









  





   





 




  





   









   





   





   




  

MMM

O

Q

PPPPPPPPPPPPPPPPPPPPPPPPP

L

N

MMMMMMMMMMMMMMMMMMMMMMM

O

Q

PPPPPPPPPPPPPPPPPPPPPPP

 and  =BRSM

K

K

K

K

K

K

1

2

1

1

2

1

1

2

1

10









( )

 

3.  IDENTIFICATION OF THE MODEL. 

While the matrices given in (8), (9) and  (10) provide the simple logistic, rating scale 

and partial credit models, as they are usually described , they cannot be used  d irectly 

in (7) because they will result in an unidentified  model.  This is easily recognised  for 

the simple logistic model by noting that if 
* c  and  

* c P1  where c  is a 

constant and  1P  is a P  vector of ones then 

 f fn SL SL n SL SL( ; , , , , ) ( ; , , , , )* *
x A B x A B  

It can be similarly shown that, APCM  and  BPCM , and  ARSM  and  BRSM , result in 

unidentified  models. 

More generally, from (7), it immediately follows that the model is not identified  for 

arbitrary choices of A  and  B.  In addressing the problem of identification the goal is 

to determine the conditions that must be satisfied  by A  and  B to ensure that if 

x B A x B A
T Tb g c h for every possible response vector x , then  and  

. 

In past practice this problem has normally been solved  for the simple logistic model 

by applying the constraint 0 , or by considering one of the item parameters as a 

linear combination of the others.  Wright and  Masters (1982), for example, constrain 
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one parameter to be the negative sum of all other parameters.  However, in the case 

of this more general model the identification becomes a more d ifficult issue. 

The following three propositions give us a set of conditions with regard  the 

identification of the model. 

Proposition One: If D  is the number of latent d imensions, P  is the length of the 

parameter vector, , and  Ki 1 is the number of response 

categories for item i  and  K Ki
i I

, then model (7) if applied  to 

the set of items I can only be identified  if P D K . 

Proof: The proof of this proposition follows d irectly from the fact that 

the rank of B A  must be less than or equal to K , since it 

contains at most K  non-zero rows.  If the length of the vector 
T T T

 (which equals P D) exceeds K  then B A  will 

not be of full column rank and single unique solution for 
T T T

 will not exist. 

 

Proposition Two: If D  is the number of latent d imensions, P  is the length of the 

parameter vector, ,  then model (7) can only be identified  if 

rank P( )A , rank D( )B  and  rank P DB A b g . 

Proof: Since A  must be conformable with  it must have rank P( )A  

Suppose that rank P( )A  then a fixed  value of the product A  

does not provide a unique solution for  and  the model is not 

identified .  An identical argument can be provided for B and  for 

B A .  

Proposition Three: If D  is the number of latent d imensions, P  is the length of the 

parameter vector, , and  Ki 1 is the number of response 

categories for item  i and K Ki
i I

, then model (7) if applied  to 

the set of items I can only be identified  if and  only if 

rank P D KB A b g . 

Proof: The necessary conditions of this proposition follow directly 

from propositions one and two.  For proving sufficiency let  

C B A, , 
T T T

 and   be the set of all possible 

response vectors for the items in I so that the identification 

requirement can be written as, 
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 x C 0 x
T iff* *    c h . 

 Since C  is a K P Da f matrix with rank P D  therefore 

K P Da f rows could  be removed from C  to produce a square 

sub-matrix 
~
C  with rank P D .  Now let xk  be the response 

vector that has a one in the k-th position and zeros elsewhere 

and let ~xk  be the corresponding vector with the same rows 

removed as where removed from C  to construct 
~
C .  Finally let 

  be the set of  P D  such vectors that are not all zeros. 

 Now, x C x Ck

T

k

T* *~ ~c h c h 0 for ~xk   is equivalent to 
~ *
C 0c h  which can hold  if and  only if 

*
. 

Note, that it follows d irectly from these propositions that the models given in (8), (9) 

and  (10) are not identified .  For each of these models identification can  be 

conveniently achieved by imposing the constraint 0 .  There are however, 

practical circumstances where it may be appropriate to modify the A  matrix so that 

identification can be provided.  For example, a constrain t of this type may not be 

suitable when the population model (1), is extended to include collateral variables 

(see Mislevy, 1985; Adams, Wilson and Wu, 1997).  If the original design matrix is 

called  the complete matrix and denoted  Ac then in the next section a procedure for 

producing a ―reduced matrix‖ A  that ensures the identification of (7) yet maintains 

the basic structure and intention of a specified  A  matrix is given.  In describing the 

procedure the cases of a multid imensional d ichotomous model, a multid imensional 

partial credit model and  a multid imensional rating scale model are considered  

separately. 

The Dichotomous Case 

The construction of a reduced matrix A  can proceed by defining D subsets of items 

Jk k k n ki i i
k1 2, , ,n s for k D1, ,  each of size nk .  It is not necessary that Jk  and  Jl  

have an empty intersection when k l .  For every Jk  a vector 
k

k i

i

  1

J

e b  can be built 

and  the matrix E e e e1

T

2

T

D

T T

, , ,c h  is considered . 
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Proposition Four Suppose that in every Jk , there is n k Dk 1 1, , ,  and  it is 

possible to construct a set F  which contains D  d ifferent items 

with Jk F  for any k.  Further, assume that none of the Jk  

is a subset of any other Jl l k,  and  none of the Jk  is a subset of 

F , k D1, , . Then, if the determinant of E is not zero, the 

multid imensional d ichotomous model can be fully specified  by 

reducing complete matrix Ac  by D  columns so that the rank of 

reduced matrix A will be P D . 

Proof. Without loss of generality in kk  can be assumed to be an element 

of Jk  (k D1, , ), which belongs to F  (if there is more than one 

such element one which has not been previously used  should  be 

chosen).  Now suppose that the in kk -th item parameter is the 

negative sum of the other item parameters from Jk , then in the 

in kk -th row of matrix Ac in columns i j njk k, , ,1 1  place -1 

and in column nk  place 0.  Repeat this procedure D  times so 

there will be D  columns in the matrix that contain only zeros. 

Deleting these zeros columns from Ac  results in the reduced 

matrix A . 

 Suppose that there exists non-zero vector c, such that 

x B A x B A
T T( ) ( ), for all x.  Now choose a 

vector x  with 1 in the positions i j njk k, , ,1  and  0 elsewhere.  

It follows that x A x A 0
T T

 and  

x B x Bc e c 0
T T

k

Tc h  for k D1, ,  and  if the 

determinant of E is non-zero, then vector c must be equal to 

zero. It follows that  and  
*
. 

The following example illustrates proposition four. 

Example 1. Consider four d ichotomous items with D 3  and  matrices A  and  B  as 

follows 

 A Bc

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0

1 1 1

1 1 1

0 0 1

and . 

Now, choose J J J1 2 31 2 3 2 4,2 ,  , ,   ,k p k p k pand  then 
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 E

L

N
MMM

O

Q
PPP

2 1 1

2 2 2

1 1 2

 , 

 

and  it is obvious that all the conditions of Proposition four hold .  Following the 

procedure given in the proposition the reduced matrix could  be constructed  

 

1

1
 .

1

1

 
 
 
 
 
  

A  

At this point it is sufficient to apply proposition three by noting that 

  

1 1 0 0

1 1 1 1
4  .

1 1 1 1

1 0 0 1

rank rank P D

 
 
    
 
 
  

A B  

The Partial Credit Case 

Proposition four can be extended to the partial credit case through a modification of 

the procedure for constructing the matrix E . 

Let Jk k D,  , ,1  be D  subsets of all of the item response categories and the 

categories are sequentially labelled  so that each Jk  contains the labels of nk  

categories.  That is Jk k k n ki i i
k1 2, , ,n s.  Again, there is no requirement that Jk  and  

Jl  have an empty intersection when k l . 

Now, for every Jk  a vector e bk j i

m

n

mk mk

k

1

 can be built and  the matrix 

 , , ,
T

T T T

1 2 DE e e e  is considered . 

Proposition Five. Suppose that in every Jk , there is n k Dk 1 1, , ,  and  it is 

possible to construct a set F which contains D  d ifferent 

categories with Jk F  for any k. Assume that none of the 

Jk  is a subset of any other Jl l k,  and  none of the Jk  is a 

subset of F , k D1, , .  Then if the determinant of E is not 

zero, the multid imensional partial credit model can be fully 
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specified  by reducing complete matrix Ac  by D  columns so that 

the rank of the reduced matrix A  will be P D . 

The proof of this proposition follows the proof of proposition four. 

To illustrate consider three polytomous items with D 4 and  matrices Ac  and  B as 

follows 

 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 0 0 2 0 0 0

1 1 1 0 0 0 0 0 0 0 0 3 1 0 0

1 1 1 1 0 0 0 0 0 0 0 4 2 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

and0 0 0 0 1 1 0 0 0 0 0 0 2 2 0

0 0 0 0 1 1 1 0 0 0 0 0 0 3 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 1 1

c

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

A B

2

0 0 0 3

0 0 0 4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

Now, choose J1 1 2 3, , ,k p  J2 3 4 5, , ,k p  J3 5 6 7, ,k p, J4 7 8 9 10 11, , , ,k p and  

F 1 4 6 11, , ,k p then 

 E

L

N

MMMM

O

Q

PPPP

6 1 0 0

3 4 1 0

0 1 6 1

0 0 3 11

 , 

 

it is easy to see that the conditions of proposition five hold . The reduced matrix is 

constructed  by following the procedure given in proposition five. 
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 A

L

N

MMMMMMMMMMMMMMM

O

Q

PPPPPPPPPPPPPPP

1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 1

0 0 0 0 0 0 0

 . 

If the item parameter vector for the complete model was 
T

 1 2 11, , ,b g  then the 

use of the reduced A  given above is equivalent to imposing the constraints 

 

1 2 3 4

4 3 5 6

7 5 4

11 8 9 10

U
V
||

W
||

 

At this point it is su fficient to note that rank P DA B 11  . 

The Rating Scale Case 

If following the Andrich formulation of the rating scale model the complete Ac  

matrix takes the form given in (10), the parameter vector, , consists of a set of I, 

item difficulty parameters and K 1 threshold  parameters.  A key feature of this 

model, is that the threshold  parameters describe a response structure that is constant 

across items, it will therefore be a requirement of the construction of the reduced A  

that this property of the threshold  parameters be maintained . 

If  1,2, ,
T

KK  then the B matrix for a rating scale model is defined  as 

B B
* K  where B

*
 is an I D matrix of zeros and ones which indicates the 

assignment of items to d imensions and  - denotes the Kronecker product.  This 

matrix corresponds to the scoring matrix for a D–dimensional d ichotomous model.  

Similarly the complete Ac matrix could  be presented  as A Ac c

* K  where A c

*
  is an 

identity matrix of order I and  it is precisely the complete design matrix for a D-

d imensional d ichotomous model.  So, the operator  provides a bijective mapping 

between the D-d imensional d ichotomous model and  the D-d imensional rating scale 
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model.  It follows that to reducing A c

*
 to A

*
 can follow the procedure described  for 

the d ichotomous model. 

4.  ESTIMATION. 

A maximum likelihood technique for estimating the parameters,  and   and     is 

fully described  in Adams, Wilson and Wang (1997).  They show that the likelihood 

of a response matrix X  for N  persons drawn at random from normal population is 

 

 , , | ; , , , ,X x A Bb g b gf n

n

N

1

 (11) 

 

and  that following d irectly the procedures developed by Bock and Aitken (1981) this 

likelihood can be maximised  with an EM algorithm that iteratively solves, 

 A x z x 0z

T

n n

n

N

E dH
RST

UVWz | ; , |a f b g
1

, (12) 

 z1

1N
dH n

n

N

; , , |xb g, (13) 

and  

 z1

1N
dH

T

n

n

N

a fa f b g; , , |x

 

. (14)

 

Where 

       | , exp ,TE     


  z

z

z z z B A   

is the expected  response pattern and H n; , |xb g is the d istribution function of the 

marginal density of    given xn .  The density of which is given by 

 h
f g

f
n

n

n

; , |
; | ;

;
x

x

x
b g b g a f

b g  (15) 

Under the Adams et al. (1997) approach the integration required  to solve the system 

(12), (13), (14) is computed  using a straightforward  application of quadrature over a 

fixed  uniform grid  of nodes that is specified  a-priori.  They have found that while 
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this is a practicable approach in low dimension the computing time becomes 

excessive for models of four or more d imensions.  As an alternative Glas (1992) 

proposes the use of Gauss-Hermite quadrature (see, Ralston & Rabinowitz, 1978) in 

conjunction with a transformation of the multivariate norma l density to ensure that 

the latent d imensions are orthogonal. 

In the case of a single latent d imension and a normal population density it is clear 

that using Gauss-Hermite quadrature for the integration is desirable since under 

these circumstances the integrals take the form 

 

   

   

( ; , , , ) ; , , | ; ,

; , , | ;0 1 ,

n n

n

f , g d

g d

         

      



  





x A B x A B

x A B ,
 (16) 

 

where g( ; , ) is the pdf of the normal d istribution. 

Our exploration of this method suggests that an approximation that uses eight nodes 

will generally be adequate. Glas’ suggestion of using the same procedure for the 

multid imensional case appears to work well for two d imensions but is not as 

efficient in higher d imensions because, as in the Adams et al. approach, the number 

of nodes increases exponentially with d imensionality.  This method also suffers from 

a theoretical d isadvantages — for a fixed  number of nodes the remainder term in the 

approximation tends to zero slowly with increasing of number of d imensions. 

An alternative approach is to use a Monte Carlo method where the integral (16) is  

considered  as the mathematical expectation of a function of a normally d istributed  

random variable (see Kalos and Whitlock, 1986; Tanner, 1993); that is  

 f En nx A B x A B; , , , , ( ; , , | )b g . (17) 

For the multid imensional case the decomposition of the covariance matrix  in the 

form  VDV
T
, where V  is an orthogonal matrix and D  is a d iagonal matrix of 

eigenvalues of the matrix  and  V V
1 T

, so that 

 
1 1 1 2 1 2
VD V VD D V

T T/ /c hc h, 

is found. Then, 
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; , ,( ) |  ,

D D

T

n n

T

n D

g d g d

E

           

   

  

 

 x A B x A B VD 0,I

x A B VD

(18) 

 

where D is d istributed  as a D-d imensional standard  normal d istribution. For 

estimation of (18) a sample of normally d istributed  random vectors Di i M,  , ,1  

is simulated  and the expectation is approximated  by 

  1/ 2

1

1
; , ,( ) |

M
T

n Di

iM
   



 x A B VD   (19) 

It is well known (see, for example Kalos and Whitlock, 1986) that the rate of 

convergence of (19) in this case has the order M 1 2
 and  this rate does not depend on 

number of d imensions. 

 

5.  STATISTICAL SIMULATIONS. 

With a model as complex as the one being considered  here an exhaustive array of 

simulations that explore and illustrate the properties of the model is obviously not 

feasible. In the following the results of six sets of simulations that were each 

designed to explore one set of issues in relation to the fitting of the model are 

reported . 

In set one, the influence that the number of nodes has on the recovery of the item 

parameters and the covariance matrix when a six d imensional partial credit model is 

fit with samples of 1000 is considered . In set two, these analyses are repeated  using 

samples of 2000. In set three the influence of using a convergence criteria based  on 

the change in the likelihood, rather than the change in the parameter estimates, 

which is used  for all other simulations is examined. In set four the reduction of the 

number of items on each d imension to just four d ichotomous items is studied . In set 

five the number of d imensions was reduced to four d imensions and the covariance 

matrix was changed to one that gives a wider range of correlations between the level 

variables  including negative values. Finally, in set six, a four -d imensional model 

using multid imensional Gauss-Hermite quadrature is fitted . 

All of the simulations that were undertaken involved the following procedure  

a) Using the Monte Carlo method, 200 samples were drawn from a hypothetical 

population in which the latent ability d imensions followed a muiltivariate normal 
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d istribution with a specified  covariance matrix and zero means. In these simulations 

only two d ifferent covariance matrices were used . For sets one to four the following 

six d imensional covariance matrix was used . 

 

L

N

MMMMMMM

O

Q

PPPPPPP

1 0 0 7 0 7 0 7 0 7 0 7

0 7 1 0 0 7 0 7 0 7 0 7

0 7 0 7 1 0 0 7 0 7 0 7

0 7 0 7 0 7 1 0 0 7 0 7

0 7 0 7 0 7 0 7 1 0 0 7

0 7 0 7 0 7 0 7 0 7 1 0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. (20) 

For sets five and six the four-d imensional covariance matrix 

 

L

N

MMMM

O

Q

PPPP

  1.000   0.678 0.348 0.430

  0.678   1.234    0.990 0.780

0.348   0.990    2.100 0.500

0.430 0.780 0.500   1.978

, (21) 

which yields the correlation matrix 

 corr

L

N

MMMM

O

Q

PPPP

  1.000   0.610 0.240 0.306

  0.610   1.000   0.615 0.499

0.240   0.615   1.000 0.245

0.306 0.499 0.245   1.000

, 

was used . 

When the data is generated  with the matrix (20) it will be referred  to as the six-

d imensional population of model. If it was drawn with  (21) it will be referred  to as 

the four-d imensional population model. 

b)  Item parameters were randomly selected  from fixed  intervals which are d ifferent 

for each d imension. 

c) For each student in the simulated  samples response vectors that conformed to t he 

multid imensional Rasch model were generated  using the Monte Carlo method. For 

each individual the response vector was generated  assuming their generated  ability 

vector and  the fixed  assumed, item parameters. 
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SET ONE: The Influence of Number of Nodes. 

The first set of simulations used  the six d imensional population model with four 

partial credit items in each d imension.  One item with each of 2, 3, 4 and 5 response 

categories. Standard  integer scoring was used  so that the possible scores on each 

d imension ran from 0 to 10.  Item parameters, , and  population parameters, , 

were estimated  using the Monte Carlo Method with 500, 1000, 1500 and 2000 nodes 

for each of 200 generated  data sets. 

Table 1 summarises the effectiveness of the parameter recovery for the four 

nodes numbers. 

Table 1. Summary Results for Simulations Set One. 

No.  Largest absolute value of t-statistics (t) and   Hotelling’s Average  

of corresponding quantile (p) for these statistics T 2
-statistics number of  

nodes t  for   p for  t  for   p for   iterations 

500 1.056 0.854 1.358 0.913 39.30 95 

1000 0.626 0.734 1.019 0.846 11.61 111 

1500 0.445 0.672 0.776 0.781 6.89 109 

2000 0.306 0.620 0.411 0.660 2.51 114 

 

The values in Table 1 were computed  as follows.  For each item parameter i we have 

the generating value i  and  200 estimated  values  , , i i1 200 , one for each simulated  

sample. It follows from design that number of parameters vary from one to four for 

d ifferent items. If mi  and  si  are the mean and standard  deviation of the estimated  

values then the statistics t m si i i i(  ) /   have a t-d istribution with 199 degrees of 

freedom (which can be approximated  by the standard  normal d istribution).  The 

maximum absolute value among all ti  is reported  in the second column in Table 1. 

In the third  column the probability from the standard  normal d istribution which 

corresponds to the quantile max
i

it  is reported .  The same procedure is applied  to the 

variances and covariances to provide columns four and five.  In column six of Table 

1 the statistics T N p N p2 1( ) / (( ) ) are reported , where T 2
 is the Hotelling’s 

statistic which was calculated  to test the hypothesis that the means of all of the 

estimated  parameters are equal to the generating values.  The statistics 

T N p N p2 1( ) / (( ) )  have an F  d istribution with N p  and  p  degrees of 

freedom.  In the last column of the table the average number of iterations which 

were needed to achieve convergence is reported . 
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Table 1 shows that increasing the number of nodes improves the estimation.  If  the  

hypotheses that the estimated  parameters are the same as the generating values are 

tested  for each component  separately, it follows from Table 1 that for 500 nodes the 

hypotheses are not rejected  with 0 15. , for 1000 nodes with 0 30. , for 1500 

nodes with 0.40  and  for 2000 nodes with 0 65. . The results are even better if 

the covariance parameters are excluded.  

The values of T 2
 decline with each increase in the number of nodes but even at 2000 

nodes Hotelling’s test rejects the null hypothesis that the estimated  values are 

unbiased .  A possible explanation for this fact is the fact that the vectors are only 

asymptotically normal while Hotelling’s test assumes normality. Dependence of the 

rate of convergence in the multid imensional central limit theorem on the number of 

d imensions could  well also be a factor that affects the valid ity of the application of 

the Hotelling’s test. 

The adequacy of the recovery is further illustrated  in the three plots in Figure 1. 

Figure 1a.   Scatterplot of Estimated and

Theoretical Parameters

Figure 1b.   Normal Probability Plot for the

Least Well Estimated Parameter 

(the value of parameter is -4.1479)

Figure 1c.   Normal Probability Plot for the

Least Well Estimated Covariance

Figure 1.  Set 1 ( 2000 nodes)

Figure  1.a
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 Figure 1a is a scatterplot of the means of estimated  values for each parameter 

against the generating values of the corresponding parameters for the 2000 nodes 

estimation.  For reference an iden tity line has been shown.  Figure 1b is a normal 

probability plot of the estimated  values for the single item parameter that was 

estimated  least well and  Figure 1c is the normal probability plot for the covariance 

that was least well estimated . For these least well cases the hypothesis of normality 

of data was tested  and they were not rejected  by both Anderson -Darling (the A-
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Squared  statistics are equal to 0.203 for the item parameters and 0.448 for the 

covariances) and  Kolmogorov-Smirnov (D199 0 029.  for parameter of d ifficulty and 

D199 0 04.  for covariance) tests. 

SET TWO: The Influence of Size of Sample. 

In set two the six d imensional model was again considered  but with 2000 

observations.  An analysis with 2500 nodes was also added. The results for this set 

are given in the Table 2. 

The results in Table 2 are consistent with those reported  in Table 1. It is necessary to 

note again that none of the means of the estimated  parameters is significantly 

d ifferent from theirs generating values.  However, as with the previous simulation 

set while the Hotelling’s test decreases as the number of nodes increases it is 

significant for all numbers of nodes.  Interestingly, the T 2
 is generally larger for 

these analyses than in the analyses reported  in Table 1. 

Table 2. Summary Results Simulations Set Two. 

No. Largest absolute value of t-statistics (t) and   Hotelling’s  Average 

of corresponding quantile (p) for these statistics T 2
-statistics number of 

nodes t  for   p for  t  for   p for   iterations 

500 1.152 0.875 1.683 0.954 43.33 93 

1000 0.763 0.777 1.100 0.864 20.74 103 

1500 0.606 0.728 0.847 0.801 9.93 96 

2000 0.496 0.690 0.666 0.747 5.92 105 

2500 0.437 0.669 0.542 0.706 4.41 102 

 

This suggests the larger sample is provid ing greater power to reject the null 

hypothesis.  Scatterplots and  normal plots for these data show results that are 

essentially identical to those shown in Figure 1 and are therefore not reported . 

SET THREE: The Influence of  Convergence Criteria. 

In set one and two the estimation was terminated  when changes in the parameter 

estimates from one iteration to the next became less than 0.001.  In this set the 

alternative criteria of the change in the likelihood is considered , and  the es timation 

was terminated  when the change in the loglikelihood was less than 0.001.  Samples 
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of size 2000 were used  in this simulation set, and  a simulation with 3000 nodes was 

added. 

The results reported  in Table 3 illustrate that the termination criterion based  upon 

estimate change gives slightly better results. 

Table 3. Summary Results for Simulations Set Three. 

No.  Largest absolute values of t-statistics (t) and   Hotelling’s Average 

of corresponding quantiles (p) for them T 2
- statistics number of 

nodes t  for   p for  t  for   p for   iterations 

500 1.092 0.862 1.585 0.943 37.68 96 

1000 0.760 0.776 1.060 0.856 21.99 97 

1500 0.511 0.695 0.770 0.779 10.20 101 

2000 0.411 0.659 0.627 0.735 6.72 107 

2500 0.330 0.629 0.524 0.700 4.64 111 

3000 0.264 0.604 0.444 0.672 3.62 113 

 

In the following simulations the change in parameter estimate criterion is used  for 

set four and five and the change in likelihood criterion is used  for set six. 

SET FOUR: The Influence of Number of Categories by each Dimension. 

In set four two sets of 200 samples were generated , one set containing samples of 

1000 observations and one set containing samples of 2000 observations. The six 

d imensional covariance matrix was used  with four d ichotomous items on each  

d imension. Therefore on each d imension scores could  only range from 0 to 4.  The 

estimation was undertaken using 500, 1000, 1500, 2000, 2500 and 3000 nodes. The 

results are reported  in Table 4. 
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Table 4. Summary Results for Simulation Set Four. 

No. No. Largest absolute values of t-statistics (t) Hotelling’s Average 

of of and  corresponding quantiles (p) for them 

statistics 

T 2
- statistics number 

observ. nodes t  for   p for  t  for   p for   of iterat. 

1000 500 0.234 0.593 0.532 0.703 14.09 94 

1000 1000 0.287 0.613 0.784 0.784 36.00 27 

1000 1500 0.307 0.620 0.955 0.830 70.93 22 

1000 2000 0.323 0.627 0.925 0.823 68.50 22 

1000 2500 0.311 0.622 0.972 0.835 83.75 21 

1000 3000 0.321 0.626 1.017 0.845 80.36 21 

2000 500 0.298 0.617 0.836 0.798 20.51 31 

2000 1000 0.347 0.636 1.104 0.865 42.66 25 

2000 1500 0.371 0.645 1.300 0.903 70.42 30 

2000 2000 0.379 0.647 1.385 0.917 116.98 21 

2000 2500 0.389 0.651 1.457 0.927 135.32 21 

2000 3000 0.388 0.651 1.446 0.926 137.03 21 

 

Interestingly Table 4 suggests that in this case the parameter recovery becomes 

worse as the number of nodes is increased . A possible explanation for this is that 

there is a small bias in the estimation and when the estimation is made more 

accurate (by increasing the number of nodes) the bias becomes more evident. Note, 

that if the number of observations in each sample is increased  from 1000 to 2000 this 

effect becomes even clearer. 

In Figure 2 scatterplots of the generating and mean estimated  value’s are reported  

for the 500 and 2000 nodes simulations.  In both cases the variances are slightly (but 

systematically) underestimated .  It is likely that with only four possible score points 

on each d imension that the variance of the latent variable could  not be well 

estimated .  It is also interesting to note from the last column of Table 4 that the 

average number of iterations has changed its order of magnitude when compared  to 

the same column in Table 1. 
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Figure  2a.
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Figure 2 .   Set Four - Scatterplots of Estimated and Theoretical Parameters (Figure 

2a - for 500 nodes; Figure 2b - for 2000 nodes). 

Normal probability plots for the worst estimated  of the item parameters and the 

worst estimated  of the covariance parameters for 500 and 2000 nodes respectively 

look similar to Figures 1b and 1c.  In each case the estimates are shown to be close to 

normal.  Further, the results in Table 4 would  fail to reject the null hypothesis with  

 = 0.7 for the item difficulty parameter and   = 0.25 for the covariances. 

SET FIVE: Case with Negative Covariances  

In this fifth set, 200 samples of 2000 observations were simulated  using the four -

d imensional covariance matrix, (21). Twelve items of three categories each were 

allocated  to each d imension, giving a score range from 0 to 24 on each d imension. 

The covariance matrix used  was deliberately chosen to contain a d iverse range of 

values, including negative values.  While such values are unlikely in educational 

outcomes, they may not be surprising in other applications. 

Table 5. Summary Results Simulations Set Five. 

No.  Largest absolute value of t-statistics (t) and   Hotelling’s Average  

of corresponding quantile (p) for this statistics T 2
-statistics number of 

oof  nodes t  for   p for  t  for   p for   iterations 

500 1.568 0.942 2.251 0.988 46.70 54 

1000 0.978 0.836 0.812 0.791 9.01 59 

1500 0.486 0.687 0.933 0.825 11.81 73 

2000 0.439 0.670 0.905 0.817 5.51 63 
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The results for this simulation are reported  in Table 5.  They show the same patterns 

as have been reported  previously. 

SET SIX: Estimations with Gauss Quadrature  

As a point of comparison for the Monte Carlo method it is worth undertaking a 

simulation with multid imensional Gauss-Hermite quadrature.  This comparison was 

chosen because it is well known that in one d imension Gauss-Hermite quadrature 

provides the most accurate results. In set six Gauss-Hermite quadrature with 2401 

nodes (7 nodes in each d imension) was applied  using the same specifications as in 

set five.  The results of these analyses are shown in Table 6. 

Table 6. Summary Results Simulations Set Six. 

No.  Largest absolute value of t-statistics (t) and   Hotelling’s Average  

of corresponding quantile (p) for this statistics T 2
-statistics number of  

nodes t  for   p for  t  for   p for   iterations 

2401 0.945 0.828 3.125 0.999 47.06 579 

The results as reported  clearly show that this method is inferior to the Monte Carlo 

method that we have used  earlier.  In Figure 3 scatterplots that show the relationship 

between the generating values and the estimated  values using the Monte Carlo 

method with 2000 nodes (Figure 3a) and the Gauss-Hermite quadrature with 2401 

nodes (Figure 3b) are reported . 

Figure  3a.
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Figure 3. Scatterplots of Estimated and Theoretical Parameters (Figure 3a - 

Set Five with 2000 nodes; Figure 3b - Set Six with 2401 nodes) 

There is a noticeable bias in the estimation of two variance parameters and greater 

variance in the item parameter estimates, when using the Gau ss-Hermite quadrature 

method.  At the same time normal probability plots shown in Figure 4 look 

reasonable for both 2000 nodes and for 2401 nodes. 
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Figure 4c.
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Figure 4d.
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Figure 4.  Normal Probability Plots for the worst Estimated Parameters and 

Covariances ( Figure 4a - for parameter with value 1.144 in Set Five; Figure 4b - 

for parameter with value 1.746 in Set Six; Figure 4c - for variance with value 

1.978 in Set Five; Figure 4d - for variance with value 2.1 in Set Six ). 

6.  Illustration with Real Data 

To illustrate a real application of the model, and  estimation method, an exploration 

of the d imensionality of the Australian Population Two science data collected  as a 

part of the Third  International Mathematics and Science Study (TIMSS) (Lokan, Ford  

& Greenwood (1996)) was undertaken.  The data consisted  of a sample of 12 852 

students who each responded to approximately 40 items.  In the TIMSS design, a 

pool of 140 items (102 multiple choice, 23 short answer and 15 extended response) 

was d istributed  over eight, linked test booklets (Adams & Gonzalez 1996).  Each 

sampled  student was assigned a single booklet.  The pool of 135 items was 

constructed  so that it included items that assessed  five content sub -domains.  Table 6 

shows the d istribution of items across the booklets, both by sub-domain and item 

type. 

The interest in analysing these data is two-fold .  First, it is interesting to determine if 

the five sub-domains are d istinct latent variables. Second, there is an interest in 

determining whether the d ifferent item types tap d ifferent latent variables. 
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To study these questions three models were tested  with Australian TIMSS data. In 

the first analysis a uni-d imensional marginal model was tested .  It gave 496405.993 

for the deviance (-2*loglikelihood).  In the second model, where items were allocated  

to three d imensions according to their type, the resulting deviance was 496232.145. 

Table 6.   Distribution of items across the booklets by sub-domains and item types 

(MC - Multiple Choice;  SA - Short Answer; ER - Extended Respond) .  

Booklet Earth 

Science 

Life Science Physics Chemistry Environment 

and Other 

 MC SA ER MC SA ER MC SA ER MC SA ER MC SA ER 

1 7 - - 9 - - 10 - - 2 - - 5 1 - 

2 5 - 3 8 1 3 9 - - 6 1 - 3 - - 

3 6 - - 11 - - 11 1 - 2 - - 2 1 - 

4 6 - - 11 - 3 8 - 3 3 - - 2 - - 

5 5 - - 6 - 1 7 2 - 5 - - 3 - - 

6 5 - - 9 - - 7 1 2 5 1 3 6 2 - 

7 7 - 4 6 2 - 10 1 - 4 - - 1 - - 

8 5 2 - 3 2 1 9 4 - 3 1 - 2 - - 

 

For the third  analysis, a five-d imensional model with items allocated  to d imension 

by sub-domain, a deviance of 495698.130 was obtained .  In the second model there 

are five parameters more than in the first one, so as the d ifference 496405.993 - 

496232.145  = 173.848 is significantly larger than 15.1 which correspond to 0.01 

quantile of the chi-square d istribution with 5 degree of freedom, it means that the 

second model is significantly better than the first one.  Similar comparison of the 

third  model with the first one gives value 807.863 which is much higher than 23.2 

which is correspond to chi-square d istribution with 10 degree of freedom.  This 

analysis shows that both multid imensional models fit significantly better than 

unid imensional model.  Note, that as the second and third  models are not 

hierarchical it is not possible to formally compare th eir fit.  Perhaps it is worth 

noting, however, that the decrease in the deviance for each degree of freedom 

increase is greater for the sub-domain based  model than it is for the item-type model 

At the same time Table 7 shows that the correlation between th e item-type 
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d imensions are, on average, slightly lower than those for the sub -domain based  

d imensions. 

Table 7 Estimated Covariance and Correlation Matrices for the Australian 

Science Data 

 Scale 

  

 

Earth 

Science 

Life Science Physics Chemistry Environment 

and Other 

 Covariances 

 
Earth Science 0.718     

Life Science 0.716 0.872    

Physics 0.550 0.608 0.512   

Chemistry 0.816 0.916 0.694 1.158  

Environment  

and  Other 

0.830 0.944 0.706 1.072 1.262 

 Correlations 

Earth Science 1.000     

Life Science 0.905 1.000    

Physics 0.908 0.910 1.000   

Chemistry 0.894 0.912 0.901 1.000  

Environment  

and  Other 

0.872 0.900 0.878 0.887 1.000 

 

 Scale 

 Multiple Responce Short Answer Extended Response 

 Covariances 

Multiple Response 0.695   

Short Answer 0.746 1.009  

Extended Response 0.730 0.895 1.013 

 Correlations 

Multiple Response 1.000   

Short Answer 0.891 1.000  

Extended Response 0.870 0.885 1.000 
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7.  Discussion 

The application of multid imensional item response models has been limited  by a 

number of factors, including but obviously not restricted  to, the fact that existing 

methods can only be applied  when the number of d imensions is limited  to three or 

perhaps four.  In this paper we have illustrated  how the use of Monte Carlo 

integration methods allows the application of a Rasch based  multid imensional to at 

least six d imensions and we have illustrated  this through application to data 

collected  as part of the Third  International Mathematics and Science Study.  Benefits 

which would  accrue from the application of such a model include improved 

estimation of the correlations between latent quantities, improved reliability of 

estimation for each d imension and better approaches modelling complex 

performance data (Adams, Wilson and Wang, 1997). 

The exploration of the Monte Carlo method with multid imensional item response 

models has only just begun and many important questions remained to be answered .  

Perhaps the most important one is, at what number of d imensions does the Monte 

Carlo method become a better choice than quadrature.  When using quadrature we 

have found that as few as eight nodes are adequate for estimation in one d imension 

and that the desirable number of nodes increases exponentially with the 

d imensionality (Wang, 1994).  When using Monte Carlo methods our preliminary 

work suggests that many hundreds of nodes may be necessary in one d imension, but 

the desirable number of nodes increases linearly with the d imensionality. 

A second important question is, what is the maximum number of d imensions that 

can be estimated  with the Monte Carlo method?  We can see no substantial d ifficulty 

in applying the approach in many-many d imensions and suspect that the limiting 

factor in applying the model in high d imensions will be the suitability of the data for 

provid ing stable estimates of the covariances and not the estimation complexity. 

A third  area for future development is the consideration of the use of the Monte 

Carlo method in conjunction with a Newton -Raphson, rather than an EM algorithm.  

In context of item response models the EM algorithm is analytically simpler than a 

Newton-Raphson method but it increases the number of iterations substantially.  A 

more efficient approach may be to use Monte Carlo integration in conjunction with a 

Newton-Raphson method. 
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