
Score Estimation and Generalised 
Partial Credit Models 

Greg Macaskill and Ray Adams 14 June 2016 

ConQuest 4 implements a more generalised item response model than that used in ConQuest 3 and 
described in note 6 (Adams & Macaskill, 2012). The ConQuest 3 model allowed the estimation of 
scoring parameters for a wide range of models. In the case of a unidimensional model for 
dichotomous data this model is well known as the two-parameter logistic model (Birnbaum, 1968). 
ConQuest 3 also included multidimensional forms of the two-parameter family of models, including 
multidimensional generalised partial credit models (Muraki , 1992) and multi-faceted models with 
score parameters estimated for each facet combination. 

In ConQuest 4 the model is further extended to allow constraints on the scoring parameters.  The 
introduction of the constraints allows scoring parameters to be applied to multi-faceted models and 
it allows the estimation of latent variances that vary with group membership -- for example different 
latent variances for males and females or for two grade level. 

Model Specification 
As is fully described in Adams and Wu (2007) the ConQuest model is specified in two parts. The first 
part is a conditional categorical item response model and the second part is a population model. The 
item response model is commonly referred to as the mixed coefficients multinomial logit model 
(MCML). Here we describe a more general form of the item response model that allows a more 
flexible approach to score parameter specification. 

Under the ConQuest 3 model the regression of the response vector on the item and person 
parameters is: 
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where  is the set of all possible response vectors. 

The dependent variable x is a vector-valued variable that describes the response pattern to a set of 
items. The model is referred to as a mixed coefficients model because items are described by a fixed 

set of unknown parameters, , while the student outcome levels (the latent variable), , is a 
(multidimensional) random effect.  The distributional assumptions for this random effect are 
specified through the population model. 
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The multi-dimensional form of the model assumes that a set of D traits underlies the individuals’ 

responses. The D latent traits define a D-dimensional latent space. The vector      1 2, , , D  

represents an individual’s position in the D-dimensional latent space. 

The matrix B allows the specification of the score or performance level assigned to each possible 
response category to each item.  To do so, the notion of a response score bikd is introduced, which 

gives the performance level of an observed response in category k, item i, dimension d.  The scores 

across D dimensions can be collected into a column vector   1 2, , ,
T

ik ik ik ikDb b bb  and again 

collected into the scoring sub-matrix for item i,   1 2, , ,
T

i i i iDB b b b  and then into a scoring matrix 

  1 2, , ,
TT T T

IB B B B  for the entire test. 

The ConQuest 4 model generalises the scoring by adding a vector  of s, scoring parameters, and a 
set of design matrices Cd, one for each dimension. The dimension of these matrices is     where 

          
    is the sum over the items of the number of response categories. This will allow 

estimation of scoring parameters and this form permits both different constraints for different 
dimensions and constraints across dimensions. 

The probability of a response in category j of item i is then given as: 
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If the scoring parameters are specified a-priori then (3) and (4) specify Rasch family models, whereas 
if the values in the scoring matrix are estimated from the data then the model is no longer a Rasch 
model.  

With appropriate choices for the design matrix A and with appropriate choices for the C and  the 
model given by (3) and (4) can be shown to be equivalent to many named item response models. For 
example, if the model is unidmensional, all items are dichotomous, A is an identity matrix (multiplied 
by –1) and C is also an identity matrix then (3) and (4) become, for a single item: 
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so that    is the estimated item location parameter and    is the estimated score (or discrimination) 
parameter. This is the two parameter logistic model. 

Similarly, appropriate choices A and appropriate constraints on C can be chosen so that (1) and (2) 
become: 
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which is a generalised partial credit model.  Note, however that this form of the generalised partial, 
credit is somewhat more general than that proposed by Muraki (1992). In the Muraki model a single 

score,   , is estimated for the item and then the score for the k-th category is 
 

 
  , whereas (6) 

allows parameters for each category. 

As the item response model is conditional on the latent D-dimensional latent variable θ , we need to 

specify a distribution for θ  to complete the definition of the model. Using a multivariate normal 
distribution for the population we have 
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where γ  is a U D  matrix of regression coefficients, Σ  is a D D covariance matrix and W  is a 

1U   vector of fixed regression variables. With this population model, we have four sets of variables 

to be estimated, the population parameters  and ,Σ γ  the 1P  vector of item parameters ξ and 

the 1S   vector of score parameters τ . 
The item response and population model together give the unconditional item response model 

      x; ,   ; | ; ,f f f d x τ x τ 



          . (8) 

Estimation 
Maximum likelihood methods can be used to estimate the four sets of parameters in the model. The 
likelihood for N observations is then 
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If we define the marginal posterior as  
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After differentiation this leads to the following four sets of likelihood equations. 
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Where 
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These can solved iteratively using the approach of Bock and Aitkin (1981) and following the methods 
described in Adams and Wu (2007). 

Fitting Standard Models 
Control of the estimation of the scoring parameters is accomplished by use of the rasch, bock, and 

scoresfree options to the model command. For identification purposes (see below) the use of 
case constraints (set constraint=cases) is also required. 

If the rasch option is used then a Rasch-type model is estimated and the scores are fixed at values 

defined through the key and score commands. 

If the scoresfree option is used then a score is estimated for every generalised item that is 
defined by the model. Recall that generalised items are defined by all the unique combinations of 
facets.  For example, the model item+rater applied to dichotomous data would result in a 
score for each of the item and rater combinations. This option provides a single score parameter for 
each item, so the model is equivalent to the generalised partial credit model (Muraki, 1992) applied 
to each generalised item. 

If the bock option is used then a Bock nominal response model is estimated so a score is estimated 
for every response category of every generalised item that is defined by the model. Recall that 
generalised items are defined by all the unique combinations of facets. 

In the case of dichotmous data the scoresfree and bock options are equivalent.  For examples of 
their estimation (see Ockwell, 2015). 

As with all ConQuest 4 models the number of categories that are modelled is a function of the 
outcomes of scoring. The score values that are assigned to categories (via score, key and recode 
statements) are taken as initial values, with the exception of zero scores which are fixed at zero and 
are not free to be estimated. 

Fitting Models Specified Using Design Matrices 
The design matrix C is used to specify the scoring parameter aspects of the model.  The C matrix is 
generated automatically when the bock, and scoresfree options are added to the model 
command. 

Greater flexibility can be obtained by importing a C matrix (see the cmatrix argument for the 

import command) 

Identification Requirements 
For Rasch models (models with fixed C values) location constraints are required. In the case of single 
facet models this is typically achieved by fixing either the case mean to be zero or the item mean to 
be zero. If the C values are also estimated then a scale constraint is also required. In the case of 



unidimensional models the scale constraint is imposed by setting the variance of the latent variable 
to 1.0.  In the case of multidimensional models variance-covariance matrix is constrained to have 
unit diagonals, that is, the estimated matrix is a correlation matrix. 
 
In addition to scale and location constraints it is also necessary to have at least one category within 
each generalised item scored as zero. In the majority of applications this will be the (most) incorrect 
response category. 
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