

Building Teacher Efficacy in Numeracy through Formative Assessment

Karen McCord
Josh Morris
Colin Johnson
Rob Proffitt-White

A response to the growing problem in mathematical knowledge, attitude and disposition with Australia

2012-2013 Tracking key conceptual understandings in 6 High Schools

Attitudes and Beliefs as variables!

Under What conditions does size effect work?

Evidence around lack of understanding

This becomes the students 'WHAT'

Recall multiplication facts up to 10 × 10 and related division facts (ACMNA075)

- count by fours, sixes, sevens, eights and nines using skip counting
- use mental strategies to build multiplication facts to at least 10 × 10, including: p^a
 - using the commutative property of multiplication, eg 7 × 9 = 9 × 7

- recall multiplication facts up to 10 × 10, including zero facts, with automaticity
- relate multiplication facts to their inverse division facts, eg 6 x 4 = 24, so 24 + 6 = 4 and 24 + 4 = 6

Most conceptual understanding and problem solving has gone

Procedural V Conceptual

Find the largest number using these 4 digits

Year 3	92 %
Year 5	98%

Find the third largest number using these 4 digits

Year 3	42%
Year 5	roffitt-White NCR: March 2015

2014: Evidence based: Gaps in capacity

The achievement standards?

 By the end of Year 3, students recognise the connection between addition and subtraction and solve problems using efficient strategies for multiplication. They model and represent unit fractions. They represent money values in various ways. Students identify symmetry in the

2011-2013 National Partnership Findings

Data Tools and Data Literacy

Pre Post Testing Success

Size effects were measuring procedural only

Colourful charts and displays

Computer generated %, charts, graphs

Assessment Questions still procedural

Most were multiple choice/online

Proficiencies missing

Initial gains not sustained, often forgotten

SET UP A STATEWIDE **LEARNING PLATFORM** FOR ALL TEACHERS

North Coast Region Mathematics

* Mental Warm Up

* Explicit Teaching

NCR Home Pag	ge Teaching Mather	atics - The WHAT Teaching M	athematics - The HOW Mental Wa	rm Ups NCR Diagno	ostics	Plannin	g
Assessment	Success Project Nume	acy Misconception Vignettes	Parent and Community Awareness	Mini Maths Pracs	P-2	3-6	7-9
Tools and Reso	urces NCR U2B Proj	ct Open Ended Questions and	Tasks				

Resources to support ...

Rop Promite winte

Warm ups

S48616983

North Coast Region

Mathematics

Working Mathematically

Diagnostic Tests Pre and Post

YEAR 5: Term 1 Diagnostic		NCR Term
NAME		- Diagnostic
1 to 1 Interview: M	ental cor	nputation
	Relies on counting	COMMENTS
Ask the student to multiply the following numbers 5 x 7 and 9 x 4		
Ask the student to add the following numbers 24 + 30 + 46		
Ask the student to subtract the following numbers 35 - 20 and 31 - 39		
		<u></u>
Shade in 0.10 of this shape Shade in 1 tenth	of this	3 Arrange these fractions from largest to smallest 5/8 3/4 1/3 1/4
Mark needs to multiply Can you showhim how		bers together. 15 x 12

North Coast Region

Can you showsome different ways of representing this number? We have done one for you.

13.5

1 ten, 3 ones and 5 tenths

0 1 million

Put a 'X' where you think the number 9 999
would go on this number line.

What number is 100 times larger than 250?

What number is 10 times smaller than 25?

9

If 5 x 10 = 50, then 0.5 x 10 = 0.50

Is this statement true or false?

Can you explain?

10 There are 503 students in a school and 50 students can fit onto a bus. Howmany buses will the school need for all the students to travel at one time? Showhow you got your answer.

NCR Resources to support the development of quality teaching and learning

Tracking the HITS on the Learning Platform from 2012

Aim of Success Team

We make mathematics enjoyable and accessible by all; teachers and students

Develop assessment literacy
Promote and instill assessment AS and FOR
Initiate and sustain an internal expert team
Make students instructional resources of
their own learning

Student's mathematical achievement is unlikely to improve without professional development focusing on mathematics content.

(Telese, 2008)

10 visits per semester

Initiate Instructional Rounds

Leadership create strategic key team

Coach, mentor and collaborate

Build capacity to create resources

Initiate PLCs and school networks

PHASE A: January 2014 – June 2014

PHASE B: July 2014 – December 2014

PHASE C: January 2015 – June 2015

PHASE D: July 2015 – December 2015

Phase A and B are sustaining the momentum

13 State High Schools 3 P-12 Colleges 22 State Primary Schools

Intended, Implemented, Attained

SULLIVAN: Understanding Mathematical Proficiencies

ASKEW: Traits of effective mathematics teachers

HATTIE: Visible learning

STACEY/ANDERSON: Problem Solving culture

FULLAN: Instructional Leadership

DuFour: Professional Learning Communities

MARZANO: High Reliability Schools: Level 3 GVC

BOALER: Positive Classroom Norms

DWECK: Fixed and Growth Mindsets

Creation of a short term diagnostic by key

Year 7 Diagnostic Task – Term 2 (Pre) Name:	
Write this in digit form: Two millions, two thousands and eight tens	Do not do anything in this column.
2. What fraction of the large shape below is shaded?	0000
3. Write a word problem that could match the following equation: $1.5 \times 60 = 90$	0000
4. Place an X on the number line to show the location of 1.4.	0000
5. Using your ruler, draw the next term in this pattern. 10	0000

Year 7 Diagnostic Task – Term 2 (Post) Name:			
Write the number that contains all of the following: Five thousands, three ones and six millions	Do not do anything in this column.		
rive ordered, ones ones and six millions	0000		
What fraction of the large shape below is shaded?			
	0000		
3. Write a word problem that could match the following equation.			
2.5 x 20 = 50			
4. Place an X on the number line to show the location of 0.5. -1. 3	0000		
Ĭ			
5. Using your ruler, draw the next term in this pattern.			
$\Diamond \boxtimes \Diamond \Diamond$	0000		

A room has a perimeter of 24m

Investigate how many different areas this room can have.

Enabler: Reminder of P and A

Extender: What is max/min

area?

'Same As' Scales

How many scales can you design at your table groups? Feel free to share your ideas

Enable: Use abacus, counters etc

Extend: Operation both sides.

Trial samples used to elicit levels of student understanding. Formulate a scale

Initiate 'Visible Learning' where students

Ensuring School Assessment promotes the Mathematics Proficiencies

Know about their learning & can plan next learning steps with teacher

Are active in their learning

Understand the assessment tools being used and what results mean

Understand the learning goals/intentions of the lesson

An self assess accurately against success criteria and know their next learning goal

Can peer assess against success criteria and give feedback based on the criteria

Can use SMART goals, then self monitor their progress

Can answer: WHERE AM I GOING, HOW AM I GOING, WHERE TO NEXT

What do we expect our students to learn?

How will we know they are learning?

How will we respond when they don't learn?

How will we respond if they already know it? Students who experience skills-focused instruction otend to master them, but do not do well when tested on problem solving and conceptual understanding.

(Schoenfeld, 2007)

Data grids to inform teachers of intervention strategies.

С	CLASS: t-6A NAPLAN BANDS			S NAPLAN dimension: YEAR 5			Reading	
	2015	3	4	5	6	7	8	Exempt
	Α				1		2	
4TA	В				4	2	1	
PAT MATHS DATA	O			5	5	3	ato the an	nronriato
PA-	D		1	2 3 We can create the a -culture -culture -teacher mi -student disp		-culture acher mind	set	
	Е	1					ources	

The NCR Mathematics Team are a result of longevity, ongoing PD and consistent investment-WE have endurance, leverage and readiness

Passionate and Persuasive

Reflective and Perceptive

Coach, mentor, collaborator

Innovative & Influential

Engaging and Understandable

Organised and Effective

In a position to effect change

Exceptional Pedagogical Content Knowledge-

Exceptional Mathematical Content Knowledge

Student Disposition to Mathematics

- Focus
 - Enjoyment
 - Purpose
 - Understanding

Questions

12

Mathematics is an area I do well in Mathematics is a subject that I am enthusiastic about I see the relevance of mathematics to other subjects I see the relevance of mathematics to the real world In class we have opportunities to discuss our answers My teacher explains mathematics in a way I can understand 6 It doesn't matter whether I use efficient or inefficient methods as long as you get the right answer in the end. In my mathematics class we celebrate achievements 8 I am confident to raise my hand in my mathematics class 9 We learn mathematics by the teacher demonstrating an example and we keep practicing until we get it right. 10 I can see how the mathematics we are learning now connects to what I have learnt in previous years. 11

It is possible to do well in mathematics without having to reason or explain your answer

Raising Awareness of Project Intent

- Target Areas
 - Student Engagement
 - Problem Solving and Reasoning
- Contextualised Demos
- Collaborative Discussion

Key Team

- •Identification of key staff to lead the agenda
- Development of own resources for use within the Faculty
 - Diagnostic Tests
 - Warmup activities to address misconceptions
- Diagnostic tests include identified core skills (individually identified for each cohort) to track from Year 7
- Warmup activities open ended tasks based on Peter Sullivan research

Diagnostic Tests

YEAR 7 DIAGNOSTIC PRE-TEST TER	RM 2 Name:
water level	
2. Lee paid for some chocolate frogs with a \$10. If ear received \$6.75 in change. How many frogs did he but	
3. What fraction of the large shape below is	4. There were 23758 people at a football
shaded? Explain how you got your answer.	match. If one third of them supported the away team, approximately how many people supported the away team? Show how you got your answer.

OneNote Resource Bank

Warmup Slide Example

One fourth of a rectangle is shaded as shown below:

In the diagram below, the shaded part represents one fourth of another rectangle. Draw some of these rectangles.

Moderation and Discussion

- Diagnostic Tests moderated at Faculty level
- •Identified common student misconceptions

Collection and Collation of Data

- •Use of Remark software to quickly process student responses
- Data returned to teachers
 - Analysis and identification of misconceptions at a class level
 - Informed choice of warmups for each teacher

Question1			Question2		
Response	Frequency	Percent	Response	Frequency	Percent
*1	6	26.09	*1	3	13.04
2	0	0.00	2	4	17.39
3	0	0.00	3	7	30.43
4	15	65.22	4	8	34.78
5	1	4.35	5	0	0.00
Missing	1	4.35	Missing	1	4.35
Question3 Response	Frequency	Percent	Question4 Response	Frequency	Percent
•1	4	17.39	•1	8	34.78
2	0	0.00	2	1	4.35
3	0	0.00	3	8	34.78
4	17	73.91	4	5	21.74
5	1	4.35	5	0	0.00
Missing	1	4.35	Missing	1	4.35
Question5			Question6		
	Frequency	Percent	Response	Frequency	Percent

Cohort Average Pre/Post Per Question

Support for Teachers

- Resource Bank
- Numeracy Coach
- Development Time and Talking Time

Ongoing Support and Moderation

- •Key team meets once a term to:
 - Peruse feedback from teaching staff
 - Act on feedback to modify assessment tasks
 - Develop further questions and warmup activities
- Collaboration with another local high school to share and develop open ended tasks

LAN Program

- •Literacy and Numeracy Program
- Conducted for Year 7 and 8 students
- Numeracy Program provides all students the opportunity to problem solve and reason

LAN – OneNote Resource Bank

Example of Content in LAN File

Success

By exposing students to instant success, through the use of pre and post testing, warmups and problem solving we have empowered the students not only with the strategies and content they need to answer the questions, but with the confidence, enthusiasm, security and the desire to discover the satisfaction that success in mathematics brings.

MOVING TEACHERS FROM:-

TRANSMISSION to CONNECTIONIST ORIENTATIONS

by developing growth mind set interventions in schools.

(Boaler, 2010)

Barriers to Success

- Teachers are content driven, and don't necessarily value the time it takes to address some of the misconceptions in prior knowledge required
 - Addressed through student engagement evidence motivated teachers to value tasks
- 2. Having teachers and students understand that success in maths is attained by work and effort Growth Mindset
 - Addressed through student success in open ended tasks and working with teachers through Faculty meetings and moderation of tasks
- 3. Time Resource Development, Moderation, Time to familiarise teachers with project
 - Support from Administration Team to allow project time to grow and realise its potential

Attaining outcomes

Our belief – maths is accessible by all, maths doesn't end in the classroom

Program mantras

- volunteers
- staff own it,
- must build capacity,
- must be sustainable,
- No matter how long it takes just do it properly because teacher attitude and feeling does make a difference,
- teachers need to have a voice in the actions toward the program – it is their program....

How?

Sales

Access to experts - sold to general staff as "you don't waste \$500 000 when it is offered to you" (4 PEACs at beck and call, 20 days relief for PD, .5 staff member /coach)

Cost

- •Minimal to start with staff didn't want to lose class time, used spares etc.
- Once momentum began, used 20 TRS plus 20 more (6 months)
- Loss of class time for training/developing resources was biggest impact
- 2 HODs key agenda
- Strategic Team PEAC, Performance HOD, Maths HOD, coach, JS DP's, myself
- Year level team volunteer teachers work with Rob and HOD, coach

Future Potential Costs

- 0.5 Numeracy Coach
- Growth coaching for Maths team ensure substantive conversation

Unintended Initial Outcomes

- Number of volunteers
- Speed of uptake by staff
- Desire to get the activities right using own time
- Energy within the department, rejuvenation of teachers
- SCI Faculty jumping on board
- After presentation of warm ups to all staff, pockets of staff in other faculties tried them – for their curriculum areas and have embedded them into their class routines